




已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
中国教育培训领军品牌环球雅思学科教师辅导教案辅导科目: 数 学 学员姓名:许博皓 年级:初 二 学科教师: 卫向丰 课 时 数:3 第_3_ 次 课授课主题动点问题专题复习教学目标1.研究基本图形,引导学生探索在运动过程中形成的特殊图形与其他图形的本质区别;步步引入,研究起点、终点和状态转折点,确定时间范围,挖掘解决动点问题的基本方法。2.动点以其知识点多、题型复杂成为中考命题组提升难度,拉开差距,选拔考生的一个“热”点,常出现于中考数学压轴题或者倒数第二道题。3.点在动,思维跟着点转个不停,从动态变化中找到解题钥匙.从经典题目中挖掘出解决动点问题的基本方法,克服中考压轴动点问题这一难点。授课日期及时段2012年12月25日10:00-12:00教学内容.如图,在矩形ABCD中,p是线段AD上一动点,O为BD的中点,PO的延长线交BC于Q (1)求证:OP=OQ (2)若AD=8cm,AB=6cm,点P从点A出发,以1cm/s的速度向D运动(不与D重合)。设点P运动的时间为ts,请用t表示PD的长,并求当t为何值时,四边形PBQD是菱形 总结:先用解析式表示出线段,再构造出直角三角形,利用勾股定理找出等量关系,最后解出所求时间及线段。其中,还考察了运动过程中,形成特殊四边形,做题时我们还要熟悉和牢记特殊图形的基本性质。解(1)证明:四边形ABCD是矩形,ADBC,PDO=QBO,又OB=OD,POD=QOB,PODQOB,OP=OQ;(2)解:PD=8-t,四边形PBQD是菱形,PD=BP=8-t,四边形ABCD是矩形,A=90,在RtABP中,由勾股定理得:AB2+AP2=BP2,即62+t2=(8-t)2,解得:t=7/4,即运动时间为7/4秒时,四边形PBQD是菱形. 梯形ABCD中,ADBC,B=90,AD=24cm,AB=8cm,BC=26cm,动点P从点A开始,沿AD边,以1厘米/秒的速度向点D运动;动点Q从点C开始,沿CB边,以3厘米/秒的速度向B点运动。已知P、Q两点分别从A、C同时出发,当其中一点到达端点时,另一点也随之停止运动。假设运动时间为t秒,问:(1)t为何值时,四边形PQCD是平行四边形?(2)在某个时刻,四边形PQCD可能是菱形吗?为什么?(3)t为何值时,四边形PQCD是直角梯形?(4)t为何值时,四边形PQCD是等腰梯形?解(1)PD=QC 24-t=3t则t=6(2)当t=6时,PD=18总结:在运动过程中形成的特殊图形与其他图形的本质区别;找出线段关系,用解析式表示出线段,最后解出。步步引入,研究起点、终点和状态转折点,确定时间范围,挖掘解决动点问题的基本方法。 DC=217(3) PD=QC-2 24-t=3t-2 t=6.5(4) PD=QC-4 t=7. 如右图,在矩形ABCD中,AB=20cm,BC=4cm,点P从A开始沿折线ABCD以4cm/s的速度运动,点Q从C开始沿CD边1cm/s的速度移动,如果点P、Q分别从A、C同时出发,当其中一点到达点D时,另一点也随之停止运动,设运动时间为t(s),t为何值时,四边形APQD也为矩形?解总结(2010)(10分)(1)操作发现如图,矩形ABCD中,E是AD的中点,将ABE沿BE折叠后得到GBE,且点G在举行ABCD内部小明将BG延长交DC于点F,认为GF=DF,你同意吗?说明理由(2)问题解决保持(1)中的条件不变,若DC=2DF,求的值;(3)类比探求保持(1)中条件不变,若DC=nDF,求的值 (2012)(10分)类比、转化、从特殊到一般等思想方法,在数学学习和研究中经常用到。如下是一个案例,请补充完整。原题:如图1,在平行四边形ABCD中,点E是BC边的中点,点F是线段AE上的一点,BF的延长线交射线CD于点G。若=3,求的值。(1) 尝试探究在图一中,过点E作EHAB交BG于点H ,则AB和EH的数量关系是 ,CG和EH的数量关系是 ,的值是 。(2) 类比延伸 在原题条件下,若=m(m0),则的值是 (用含m的代数式表示)。试写出解答过程。 (3)拓展迁移 如图二,梯形ABCD中,DCAB,点E是BC的延长线上的一点,AE和BD相交于点F。若=a,=b(a0,b0),则的值是 (用含a、b的代数式表示)1. 如图,在等腰梯形中,,AB=12 cm,CD=6cm , 点从开始沿边向以每秒3cm的速度移动,点从开始沿CD边向D以每秒1cm的速度移动,如果点P、Q分别从A、C同时出发,当其中一点到达终点时运动停止。设运动时间为t秒。(1)求证:当t=时,四边形是平行四边形;ABCDQP(2)PQ是否可能平分对角线BD?若能,求出当t为何值时PQ平分BD;若不能,请说明理由;(3)若DPQ是以PQ为腰的等腰三角形,求t的值。2. 如图所示,ABC中,点O是AC边上的一个动点,过O作直线MN/BC,设MN交的平分线于点E,交的外角平分线于F。 (1)求让:; (2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论。(3)若AC边上存在点O,使四边形AECF是正方形,且=,求的大小。3. 如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D处,求重叠部分AFC的面积.4. 如图所示,有四个动点P、Q、E、F分别从正方形ABCD的四个顶点出发,沿着AB、BC、CD、DA以同样的速度向B、C、D、A各点移动。 (1)试判断四边形PQEF是正方形并证明。 (2)PE是否总过某一定点,并说明理由。(3)四边形PQEF的顶点位于何处时,其面积最小,最大?各是多少?5.如图,直角梯形ABCD中,ADBC,ABC90,已知ADAB3,BC4,动点P从B点出发,沿线段BC向点C作匀速运动;动点Q从点D 出发,沿线段DA向点A作匀速运动过Q点垂直于AD的射线交AC于点M,交BC于点NP、Q两点同时出发,速度都为每秒1个单位长度当Q点运动到A点,P、Q两点同时停止运动设点Q运动的时间为t秒(1)求NC,MC的长(用t的代数式表示);(2)当t为何值时,四边形PCDQ构成平行四边形?(3)是否存在某一时刻,使射线QN恰好将ABC的面积和周长同时平分?若存在,求出此时t的值;若不存在,请说明理由; (4)探究:t为何值时,PMC为等腰三角形?解(1)NC=t+1,PN=|5-(t+1)-t|=|4-2t|(2)若t时刻满足条件,则满足矩形ABNQ面积=3(3-t)=1/2*(3+4)*3/2=21/4,则t=5/4此时AB+BN+QA=3+2(3-t)=13/2,而梯形总周长为10+100.5,不满足条件。故不存在这样(1)NC=t+1,PN=|5-(t+1)-t|=|4-2t|(2)若t时刻满足条件,则满足矩形ABNQ面积=3(3-t)=1/2*(3+4)*3/2=21/4,则t=5/4此时AB+BN+QA=3+2(3-t)=13/2,而梯形总周长为10+100.5,不满足条件。故不存在这样的t。t。5、(山东青岛课改卷 )如图,有两个形状完全相同的直角三角形ABC和EFG叠放在一起(点A与点E重合),已知AC8cm,BC6cm,C90,EG4cm,EGF90,O 是EFG斜边上的中点如图,若整个EFG从图的位置出发,以1cm/s 的速度沿射线AB方向平移,在EFG 平移的同时,点P从EFG的顶点G出发,以1cm/s 的速度在直角边GF上向点F运动,当点P到达点F时,点P停止运动,EFG也随之停止平移设运动时间为x(s),FG的延长线交 AC于H,四边形OAHP的面积为y(cm2)(不考虑点P与G、F重合的情况)(1)当x为何值时,OPAC ?(2)求y与x 之间的函数关系式,并确定自变量x的取值范围(3)是否存在某一时刻,使四边形OAHP面积与ABC面积的比为1324?若存在,求出x的值;若不存在,说明理由(参考数据:1142 12996,1152 13225,1162 13456或4.42 19.36,4.52 20.25,4.62 21.16)11、已知:如图,ABC是边长3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止运动设点P的运动时间为t(s),解答下列问题:(1)当t为何值时,PBQ是直角三角形?(2)设四边形APQC的面积为y(cm2),求y与t的关系式;是否存在某一时刻t,使四边形APQC的面积是ABC面积的三分之二?如果存在,求出相应的t值;不存在,说明理由; (2005宁德)如图,已知直角梯形ABCD中,ADBC,B=90,AB=12cm,BC=8cm,DC=13cm,动点P沿ADC线路以2cm/秒的速度向C运动,动点Q沿BC线路以1cm/秒的速度向C运动P、Q两点分别从A、B同时出发,当其中一点到达C点时,另一点也随之停止设运动时间为t秒,PQB的面积为ym2(1)求AD的长及t的取值范围;(2)当1.5tt0(t0为(1)中t的最大值)时,求y关于t的函数关系式;(3)请具体描述:在动点P、Q的运动过程中,PQB的面积随着t的变化而变化的规律(1)在梯形ABCD中,ADBC、B=90过D作DEBC于E点,如图所示ABDE 四边形ABED为矩形, DE=AB=12cm在RtDEC中,DE=12cm,DC=13cmEC=5cmAD=BE=BC-=EC=3cm(2分)点P从出发到点C共需=8(秒),点Q从出发到点C共需=8秒(3分),又t0,0t8(4分);(2)当t=1.5(秒)时,AP=3,即P运动到D点(5分)当1.5t8时,点P在DC边上PC=16-2t过点P作PMBC于M,如图所示PMDE=即= PM=(16-2t)(7分)又BQ=t y=BQPM=t(16-2t)=-t2+t(3分),(3)当0t1.5时,PQB的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 9.4全民守法 教学设计-2024-2025学年高中政治统编版必修三政治与法治
- 2025合作伙伴制片聘用合同
- 2025超市员工劳动合同
- 2025年合同终止通知函模板
- 2025幕墙工程的采购合同范本
- 2025合同法基本概念辨析题
- Lesson 2 Films and Television教学设计-2025-2026学年初中英语六年级下册上海新世纪版
- 印刷厂产品包装规格回收办法
- 开封事业单位笔试真题2025
- 2024年温江区招聘教师笔试真题
- 舞蹈基础教学舞蹈基础知识科普培训PPT教学课件
- 安全教育7不要离家出走
- 最新鲁科版四年级上册英语Unit 4《Lesson 1 Its spring》课件
- 工程项目质量管理手册范本
- 养老机构入住老人服药记录表模板
- 家谱模板,树形图(绝对精品,一目了然)
- 广播电视节目的主持人概念、类型和作用
- 决策分析管理运筹学课件
- 新能源汽车技术完整版课件
- PFMEA密封圈范例
- 广通客车bms通讯协议分册
评论
0/150
提交评论