




已阅读5页,还剩14页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
18 2 1矩形 第十八章平行四边形 人教版八年级下册 新课引入 1 平行四边形的性质有 平行四边形的对边 对角 邻角 对角线 2 平行四边形的判定方法有 两组对边 两组对边 一组对边 的四边形是平行四边形两组对角 对角线 平行且相等 相等 互补 互相平分 分别相等 分别相等 平行且相等 分别相等 互相平分 平行 相等 平行 相等 相等 相等 平分 平分 相等 新课引入 1 2 学习目标 理解矩形定义 掌握矩形的性质 3 掌握矩形的判定方法 新课讲解 知识点一矩形的定义和性质1 矩形的定义 的平行四边形是矩形 有一个角是直角 2 矩形的性质 1 矩形是特殊的形 它具有形的一切性质 即边 角 对角线 2 矩形还有以下特殊性质 知识点一 有一个角是直角 平行四边 平行四边 矩形的对边平行且相等 矩形的对角相等 矩形的对角线互相平分 矩形的四个角都是直角 矩形的对角线相等 练一练求证 矩形的对角线相等 已知ABCD是矩形 求证AC BD 证明 ABCD是矩形 ABC DCB 90 AB CD BC CB ABC DCB AC BD 新课讲解 知识点二矩形性质的应用如图 在矩形ABCD中 AC BD相交于点O 根据矩形的性质 AO AC 由此我们得到直角三角形的一个性质 直角三角形斜边上的中线斜边的 知识点二 BO CO DO BD 等于 一半 新课讲解 例1如图 矩形ABCD的对角线AC BD相交于点O AOB 60 AB 4 求矩形对角线的长 解 四边形ABCD是矩形 AC与BD且 OA OB 又 AOB 60 OAB是三角形 OA OB AC BD 2 知识点三 相等 互相平分 等边 AB AB 2 4 8 新课讲解 2 矩形是轴对称图形吗 如果是 它有几条对称轴 知识点三 答 是 有两条对称轴 新课讲解 练一练1 一个矩形的一条对角线长为8 两条对角线的一个交角为120 求这个矩形的边长 结果保留小数点后两位 知识点三 新课讲解 矩形的判定定理知识点四 1 定义 的平行四边形是矩形 符号语言 如图 在口ABCD中 90 口ABCD是 有一个角是直角 A 平行四边形 新课讲解 矩形的判定定理知识点一 2 对角线 是矩形 已知 如图 在口ABCD中 求证 平行四边形ABCD是矩形 证明 四边形ABCD是 AB BC 又 AC ABC DCB ABC DCB 又 ABC DCB 180 ABC DCB 口ABCD是矩形 有一个角是 的平行四边形是 互相平分且相等的平行四边形 AC BD 平行四边形 CD AD BD AB CD 直角 矩形 新课讲解 矩形判定定理的应用知识点二 如图 口ABCD的对角线AC BD相交于点O OAB是等边三角形 且AB 4 求口ABCD的面积 解 OAB是等边三角形且四边形ABCD的对角线AC BD互相平分 AO OB OC OD AB DC 4 AOB AOD 又AO DO ADC 四边形ABCD是矩形AC 8 DC 4 AD 平行四边形ABCD面积为 新课讲解 1 矩形的定义 2 矩形的特殊性质 3 直角三角形斜边上的中线等于 4 学习反思 有一个角是直角的平行四边形是矩形 矩形的四个角都是直角矩形的对角线相等 斜边的一半 归纳小结 1 矩形的判定定理 1 定义 2 3 2 矩形判定定理的应用 有一个角是直角的平行四边形是矩形 对角线互相平分且相等的平行四边形是矩形 有三个角是直角的四边形是矩形 归纳小结 强化训练 1 矩形两条对角线把矩形分成个等腰三角形 2 矩形具有而平行四边形不一定具有的性质是 填代号 对边平行且相等 对角线互相平分 对角相等 对角线相等 4个角都是90 轴对称图形 四 4 矩形的两条对角线所成的钝角为120 若一条对角线的长是2 那么它的周长是 3 矩形的面积为48 一条边长为6 则矩形的另一边长为 对角线为 8 10 强化训练 5 判断正误 1 有一个角是直角的四边形是矩形 2 对角线相等的四边形是矩形 3 对角线互相平分且相等的四边形是矩形 4 四个角都相等的四边形是矩形 5 一组邻角相等的平行四边形是矩形 6 对角互补的平行四边形是矩形 强化训练 6 如图AC BD是矩形ABCD的两条对角线 AE CG BF DH 求证 四边形EFGH是矩形 证明 ABCD是矩形 OA OC OB ODOE OA AE OG OC CG AE CG OE OGOF OB OD
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 城市地下空间综合开发利用项目2025年地下空间开发效益评价报告
- 城市地下停车场智慧化管理系统建设2025年技术路线与政策支持
- 工程合伙制方案(3篇)
- 城市共享自习室连锁化发展对青少年学习习惯的影响研究
- 杭州施工安全B级培训课件
- 城市公园改造提升项目2025年社会稳定风险评估与生态旅游发展报告
- 城市公园健身设施智能化改造对公园管理效率提升分析
- 游戏监管政策体系构建-洞察及研究
- 运行部电气专工岗位培训与考试题库
- 皮内注射相关理论知识考核试题及答案
- 2025合同范本技术咨询合同
- 2.2创新永无止境(课件) 2025-2026学年度道德与法治九年级上册 统编版
- 2025企业销售人员劳动合同
- 第一单元 主题案例二 学习家庭园艺技巧-高中劳动与综合实践单元教学设计
- 年处理12万吨煤焦油加工工艺初步设计
- YB 4094-1993炮弹用方钢(坯)超声波探伤方法
- 《雨巷》优秀课件-雨巷课件一等奖
- 《嫦娥(李商隐)》课件
- 《人工染色体载体》课件
- 平行平板的多光束干涉
- 《全面质量管理》习题集
评论
0/150
提交评论