




已阅读5页,还剩29页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第九章 Lapping 研磨 Lapping is a finishing operation used on flat and cylindrical surfaces. The lap, shown in Fig.9.1a, is usually made of cast iron, copper, leather, or cloth. 研磨是一种用于平面和圆柱面的精加工作业。研具,如图9.1a所示,通常用铸铁、铜、皮革或布制成。The abrasive particles are embedded in the lap, or they may be carried through slurry. Depending on the hardness of the workpiece, lapping pressures range from 7kPa to 140kPa (1 to 20 psi).研磨微粒嵌入研具内,或者可以通过液体携带。根据工件硬度,研磨压力可在7kPa到140kPa(1到20psi)范围中取。 Lapping has two main functions. Firstly, it produces a superior surface finish with all machining marks being removed from the surface. Secondly, it is used as a method of obtaining very close fits between mating parts such as pistons and cylinders. 研磨有两个主要作用。首先,它通过去除所有机加工痕迹能产生较好的表面光洁度。其次,它能用作获得像活塞与气缸之类配件间过盈配合的方法。 The lapped workpiece surface may look smooth but it is actually filled with microscopic peaks, valleys, scratches and pits. Few surfaces are perfectly flat. Lapping minimizes the surface irregularities, thereby increasing the available contact area. 研磨后的工件表面可能看似平滑,其实布满着微观峰、谷、划痕和凹陷。几乎没有表面是完全平整的。研磨使表面不规则最小化,因而增加了有效接触面积。The drawing in Fig.9.1a shows two surfaces. The upper one is how a surface might look before lapping and the lower one after lapping. Lapping removes the microscopic mountain tops and produces relatively flat plateaus. Entire microscopic mountain ranges may need to be ground down in order to increase the available contact area.图9.1a上显示了两个表面。上面是研磨前表面可能的外观模样而下面则是研磨后的模样。研磨去除了微观峰顶从而产生相对平坦的平台。整个微观山脉范围都需要磨去以增加有效接触面积。 Production lapping on flat or cylindrical pieces is done on machines such as those shown in Fig.9.1b and 9.1c. Lapping is also done on curved surfaces, such as spherical objects and lenses, using specially shaped laps. 研磨平面或圆柱面工件的生产过程是在如图9.1b和9.1c那样的机器上完成的。研磨也可采用特殊成型研具在诸如球形物体和透镜之类的曲面上进行。Polishing 抛光 Polishing is a process that produces a smooth, lustrous surface finish. Two basic mechanisms are involved in the polishing process: (a) fine-scale abrasive removal, and (b) softening and smearing of surface layers by frictional heating during polishing. 抛光是生成平滑、有光泽表面光洁度的工艺。抛光工艺涉及两种基本机理: (a)精细等级磨粒去除,和(b)在抛光中通过摩擦生热软化并抹光表面层。Electropolishing Electropolishing is an electrochemical process similar to, but the reverse of, electroplating. The electropolishing process smoothes and streamlines the microscopic surface of a metal object. Mirror-like finishes can be obtained on metal surfaces by electropolishing.电解抛光 电解抛光是一种与电镀相似的电化学工艺,但过程与电镀正好相反。电解抛光工艺使金属物体的微观表面平滑和简单化。通过电解抛光能在金属表面得到镜面光洁度。 In electropolishing, the metal is removed ion by ion from the surface of the metal object being polished. Electrochemistry and the fundamental principles of electrolysis (Faradays Law) replace traditional mechanical finishing techniques. 在电解抛光中,金属是逐个离子地从被抛光金属物体表面去除的。电化学和电解基本原理(Faraday定理)取代了传统的机械精加工技术。In basic terms, the object to be electropolished is immersed in an electrolyte and subjected to a direct electrical current. The object is maintained anodic, with the cathodic connection being made to a nearby metal conductor.用基本术语说,要电解抛光的物体被浸没在电解液中并且通上直流电。该物体为阳极,阴极连接到附近的金属导体上。 Smoothness of the metal surface is one of the primary and most advantageous effects of electropolishing. During the process, a film of varying thickness covers the surface of the metal. This film is thickest over micro depressions and thinnest over micro projections. 金属表面的平滑是电解抛光主要的和最有优势的效应之一。在此过程中,一变化着厚度的膜覆盖在金属表面上。该膜在微观凹陷处最厚而在微观凸出处最薄。Electrical resistance is at a minimum wherever the film is thinnest, resulting in the greatest rate of metallic dissolution. Electropolishing selectively removes microscopic high points or “peaks” faster than the rate of attack on the corresponding micro-depressions or “valleys”. 电阻在膜最薄处最小,导致最大金属分解率。电解抛光选择性地去除微观高点或“峰” 快于对相应微观凹陷处或“谷”的侵蚀速率。Stock is removed as metallic salt. Metal removal under certain circumstances is controllable and can be held to 0.0001 to 0.0025 mm.原材料以金属盐的形式被去除。在特定环境下金属的去除是可控的并且保持在0.0001 到0.0025mm范围内。Chemical Mechanical Polishing Chemical mechanical polishing is becoming an increasingly important step in the fabrication of multi-level integrated circuits. Chemical mechanical polishing refers to polishing by abundant slurry that interacts both chemically and mechanically with the surface being polished.化学机械抛光 化学机械抛光正在多层集成电路制造领域成为日益重要的步骤。化学机械抛光是指大量抛光液与被抛光表面产生化学和机械作用的抛光。During the chemical mechanical polishing process, a rotating wafer is pressed face down onto a rotating, resilient polishing pad while polishing slurry containing abrasive particles and chemical reagents flows in between the wafer and the pad.在化学机械抛光过程中,旋转晶片面向下压在旋转、有回弹力的抛光衬垫上,而同时含有研磨微粒和化学反应物的抛光液流过晶片与衬垫之间。The combined action of polishing pad, abrasive particles and chemical reagents results in material removal and polishing of the wafer surface. Chemical mechanical polishing creates flat, damage-free on a variety of brittle materials and it is used extensively on silicon wafers in the manufacture of integrated circuits.抛光衬垫、研磨微粒和化学反应物的共同作用导致晶片表面的材料去除并抛光。化学机械抛光可使多种易碎材料平整且不受损害,因此在集成电路制造中被广泛地用在硅晶片上。 Chemical mechanical polishing is a complicated multiphase process. It mainly includes the following two dynamics. First, the active component in polishing slurry reacts with the atoms of the wafer, and the process is chemical reaction step with oxidation-reductive reaction. 化学机械抛光是一种复杂的多相工艺。它主要包括下列两个动态过程:第一,抛光液中活性成分与晶片的原子发生反应,这是带有氧化-还原反应的化学反应步骤。The second step is the process of desorption, that is to say, the resultants gradually separate from the wafer surface and new surface is exposed to polishing slurry. If chemical reactive rate is smaller, the total removal rate of the wafer is also small; furthermore, the surface degree of finish is not good.第二步是解吸附过程,即反应产物逐渐从晶片表面分离并将新表面暴露给抛光液。如果化学反应速率较小,晶片的总去除率也较小,而且表面光洁程度不够好。On the contrary, even if chemical reaction is very rapid, but desorption is very slow, the total removal rate is not good. Because resultants connot separate from the wafer surface, the active component in the polishing slurry cannot expose and react with the atoms on the new surface, which holds up chemical reaction. 与之相反,即使化学反应很快,但解吸附很慢,则总去除率也不够好。因为反应产物不能从晶片表面分离,抛光液中活性成分就不能暴露并与新表面上的原子起反应,这会抑制化学反应。The balance and compositive effects of two steps decide the total removal rate and its surface degree of finish.这两个步骤的平衡与合成效应决定了总去除率和表面光洁程度。第十章 Surface Engineering 表面处理 The processes of surface engineering, or surface treatments, tailor the surfaces of engineering materials to: (1) control friction and wear, (2) improve corrosion resistance, (3) change physical property, e.g., conductivity, resistivity, and reflection, (4) alter dimension, (5) vary appearance, e.g., color and roughness, (6) reduce cost. 进行表面工程或表面处理的目的是:(1)控制摩擦和磨损,(2)改善抗腐蚀性,(3)改变物理性能,例如,传导率、电阻系数和反射率,(4)修改尺寸,(5)变更外观,例如颜色和粗糙程度,(6)降低成本。 Common surface treatments can be divided into two major categories: treatments that cover the surfaces and treatments that alter the surfaces.通常的表面处理可以分为两个主要类型:覆盖表面的处理和改变表面的处理。Covering the Surface覆盖表面 The treatments that cover the surfaces include organic coatings and inorganic coatings. 覆盖表面的处理包括有机涂层和无机涂层。The inorganic coatings perform electroplatings, conversion coatings, thermal sprayings, hot dippings, furnace fusings, or coat thin films, glass, ceramics on the surfaces of the materials.无机涂层有电镀、转化层、热喷涂、热浸渍、熔炉熔融、或在材料表面涂上薄膜、玻璃、陶瓷。 Electroplating is an electrochemical process by which metal is deposited on a substrate by passing a current through the bath. 电镀是一种在电镀槽通上电流使金属沉淀在基体上的电化学过程。 Usually there is an anode (positively charged electrode), which is the source of the material to be deposited; the electrochemistry which is the medium through which metal ions are exchanged and transferred to the substrate to be coated; and a cathode (negatively charged electrode) which is the substrate to be coated. 通常有一个阳极(正电极),是要沉淀材料的来源;电化学反应是使金属离子交换并迁移到要覆盖基体上的中间过程;以及一个阴极(负电极),即要覆盖的基体。 Plating is done in a plating bath which is usually a non-metallic tank (usually plastic). The tank is filled with electrolyte which has the metal, to be plated, in ionic form. 电镀在通常为非金属容器(一般是塑料)的电镀槽中进行。该容器装满了含有离子态被镀金属的电解液。 The anode is connected to the positive terminal of the power supply. The anode is usually the metal to be plated (assuming that the metal will corrode in the electrolyte). For ease of operation, the metal is in the form of nuggets and placed in an inert metal basket made out non-corroding metal (such as titanium or stainless steel). 阳极与电源正极相连。阳极通常为被镀金属(假定该金属能在电解液中腐蚀)。为了操作容易,该金属呈固体小块形式并置于由抗腐蚀金属(如钛或不锈钢)制成的惰性金属筐内。 The cathode is the workpiece, the substrate to be plated. This is connected to the negative terminal of the power supply. The power supply is well regulated to minimize ripples as well to deliver a steady predictable current, under varying loads such as those found in plating tanks. 阴极是工件,即要镀的基体,连接到电源的负极。很好地调节电源使波动最小化并在载荷变化情况(如同电镀容器中看到的那样)下提供稳定的可预知电流。 As the current is applied, positive metal ions from the solution are attracted to the negatively charged cathode and deposit on the cathode. As a replenishment for these deposited ions, the metal from the anode is dissolved and goes into the solution and balances the ionic potential. 一旦通上电流,来自溶液的正的金属离子被吸引到带负电的阴极并沉淀在其上。作为这些沉淀离子的补充,来自阳极的金属被溶解并进入溶液平衡离子势能。 Thermal spraying process. Thermal spraying metal coatings are depositions of metal which has been melted immediately prior to projection onto the substrate. The metals used and the application systems used vary but most applications result in thin coatings applied to surfaces requiring improvement to their corrosion or abrasion resistance properties. 热喷涂工艺:热喷涂金属涂层是金属熔化后立即投射到基体上形成的金属沉积层。所用的金属和应用系统都可以变化,但大多数应用都是在要求改善抗腐蚀或耐磨性能的表面涂上薄层。 Thermal spray is a generic term for a broad class of related processes in which molten droplets of metals, ceramics, glasses, and/or polymers are sprayed onto a surface to produce a coating, to form a free-standing near-net-shape, or to create an engineered material with unique properties. 热喷涂是用于很大一类相关工艺的一个通用术语,喷涂到表面产生涂层的熔化小滴可以是金属、陶瓷、玻璃和/或聚合物,形成独立的近似纯形或产生具有独特性能的设计材料。 In principle, any material with a stable molten phase can be thermally sprayed, and a wide range of pure and composite materials are routinely sprayed for both research and industrial applications. Deposition rates are very high in comparison to alternative coating technologies. 大体上,有稳定熔化状态的任何材料都可以热喷涂,范围宽阔的纯净和合成材料一般都能喷涂用于研究及工业目的。其沉积率与可供选择的涂层技术比较是很高的。Deposit thickness of 0.1 to 1mm is common, and thickness greater than 1cm can be achieved with some materials.沉淀厚度普遍为0.1到1mm,对某些材料则沉淀厚度可以达到1cm以上。 The process for application of thermal spray metal is relatively simple and consists of the following stages.(1) Melting the metal at the gun.(2) Spraying the liquid metal onto the prepared substrate by means of compressed air. 热喷涂金属的应用工艺相对简单并由下列阶段组成:(1)在喷枪内熔化金属。(2)通过压缩空气将液态金属喷涂在准备好的基体上。(3) Molten particles are projected onto the cleaned substrate. There are two main types of wire application available today namely arc spray and gas spray.(3)熔化微粒投射在清洁过的基体上。 现在有两种主要的金属丝应用类型可选用,也就是电弧喷涂和气体喷涂。 ARCA pair of wires are electrically energized so that an arc is struck across the tips when brought together through a pistol. Compressed air is blown across the arc to atomise and propel the autofed metal wire particles onto the prepared workpiece. 电弧喷涂当一对金属丝通过手持喷枪连到一起时,通上电横过其末端划燃电弧。压缩空气吹过电弧使其雾化并驱使自动送料金属丝微粒到准备好的工件上。 GASIn combustion flame spraying the continuously moving wire is passed through a pistol, melted by a conical jet of burning gas. The molten wire tip enters the cone, atomises and is propelled onto the substrate. 气体喷涂连续移动的金属丝在燃烧火焰喷射中通过手持喷枪,并被燃烧气体的锥形喷嘴所熔化。熔化后的金属丝顶端进入锥体雾化并驱使其到基体上。 Thin-Film Coatings. Physical Vapor Deposition (PVD) and Chemical Vapor Deposition (CVD) are two most common types of thin-film coating methods. 薄膜涂层:物理蒸发沉淀(PVD)和化学蒸发沉淀(CVD)是两种最常见薄膜涂层方法的类型。 PVD coatings involve atom-by-atom, molecule-by-molecule, or ion deposition of various materials on solid substrates in vacuum systems. 物理蒸发沉淀涂层涉及到在真空装置内各种各样的材料原子紧靠原子、分子紧靠分子或离子沉淀于固态基体上。 Thermal evaporation uses the atomic cloud formed by the evaporation of the coating metal in a vacuum environment to coat all the surfaces in the line of sight between the substrate and the target. It is often used in producing thin, 0.5m, decorative shiny coatings on plastic parts. 热蒸发利用涂层金属在真空环境中蒸发形成的微粒子雾将基体和靶材之间可见范围内所有表面覆盖。在塑料零件上生成较薄(0.5m)的、装饰性的、有光泽的涂层时常常用到它。 The thin coating, however, is fragile and not good for wear applications. The thermal evaporation process can also coat a very thick, 1mm, layer of heat-resistant materials, such as MCrAIYa metal, chromium, aluminum, and yttrium alloys, on jet engine parts. 然而,这种薄涂层是易碎的并不适合用于磨损场合。热蒸发工艺也能在喷气发动机零件上覆盖很厚(1mm)的耐热材料涂层,例如MCrAIY一种金属、铬、铝和钇合金。 Sputtering applies high-technology coatings such as ceramics, metal alloys, organic and inorganic compounds by connecting the workpiece and the substance to a high-voltage DC power supply in an argon vacuum system. 反应溅射法通过在氩真空设备中连接工件和具有特定成分的材料到高压直流电来应用诸如陶瓷、金属合金、有机和无机化合物之类的高技术涂层。The plasma is established between the substrate (workpiece) and the target (donor) and transposes the sputtered off target atoms to the surface of the substrate.等离子区形成于基体(工件)和靶材(原料物质)之间并将被溅射的靶材原子转移到基体的表面上。When the substrate is non-conductive, e.g., polymer, a radio-frequency (RF) sputtering is used instead. Sputtering can produce thin, less than 3m (120in), hard thin-film coatings, e.g., titanium nitride (TIN) which is harder than the hardest metal. 如果基体不导电,例如聚合物,则采用射频(RF)溅射代替。反应溅射法可以生成较薄(小于3m(120in)的、坚硬薄膜涂层,像比最硬金属还硬的氮化钛(TIN)。Sputtering is now widely applied on cutting tools, forming tools, injection molding tools, and common tools such as punches and dies, to increase wear resistance and service life.现在反应溅射法已被广泛应用于切削刀具、成型工具、注射模具和诸如冲头和冲模之类的通用器具,以增强其耐磨性和使用寿命。 CVD is capable of producing thick, dense, ductile, and good adhesive coatings on metals and non-metals such as glass and plastic. Contrasting to the PVD coating in the “line of sight”, the CVD can coat all surfaces of the substrate. 化学蒸发沉淀能在金属和像玻璃和塑料之类的非金属上生成较厚的、致密的、有延伸性的和带良好粘性的涂层。与物理蒸发沉淀在“可见范围”对比,化学蒸发沉淀能将基体的所有表面都覆盖。 Conventional CVD coating process requires a metal compound that will volatilize at a fairly low temperature and decompose to a metal when it contacts with the substrate at higher temperature. 常规的化学蒸发沉淀涂层工艺需要一种容易在相当低温度下挥发并且在较高温度下与基体接触时能分解成纯金属的金属化合物。The most well known example of CVD is the nickel carbonyl (NiCO4) coating as thick as 2.5mm (0.1in.) on glass windows and containers to make them explosion or shatter resistant.最为人熟知的化学蒸发沉淀例子是在玻璃窗和容器上镀厚为2.5mm(0.1in.)的羰基镍(NiCO4)涂层使它们能抵抗爆裂或破碎。 Diamond CVD coating process is introduced to increase the surface hardness of cutting tools. However, the process is done at the temperatures higher than 700 (1300) which will soften most tool steel. 为增加切削刀具表面硬度引入了钻石化学蒸发沉淀涂层工艺。可是此工艺要在高于700(1300)的温度下才能实现,这温度会软化大多数工具钢。 Thus, the application of diamond CVD is limited to materials which will not soften at this temperature such as cemented carbides.因而钻石化学蒸发沉淀的应用受到材料限制,要求材料在此温度下不软化例如硬质合金。 Plasma-Assisted CVD coating process can be performed at lower temperature than diamond CVD coatings. This CVD process is used to apply diamond coatings or silicon carbide barrier coatings on plastic films and semiconductors, including the state of the art 0.25m semiconductors. 等离子体辅助化学蒸发沉淀涂层工艺可以在比钻石化学蒸发沉淀涂层低的温度下操作。这种化学蒸发沉淀用于在塑料膜和半导体(包括人工0.25m半导体的情况)上覆盖钻石涂层或碳化硅隔离涂层。Altering the Surfaces改变表面 The treatments that alter the surfaces include hardening treatments, high-energy processes and special treatments. 改变表面的处理包括淬火处理、高能加工和特殊处理。 High-energy processes are relatively new surface treatment methods. They can alter the properties of surfaces without changing the dimension of the surface. Common high-energy processes, including electron beam treatment, ion implantation, and laser beam treatment, are briefly discussed as follows: 高能加工是相对较新的表面处理方法。它们能在不改变表面尺寸的情况下改变表面性能。通用的高能加工包括电子束处理、离子注入和激光束处理简要讨论如下: Electron beam treatment. Electron beam treatment alters the surface properties by rapid heatingusing electron beam and rapid coolingin the order of 106/see in a very shallow region, 100m, near the surface. This technique can also be used in hardfacing to produce “surface alloys”. 电子束处理:电子束处理在靠近表面很浅(100m)的区域通过用电子束快速加热并以106/秒等级快速冷却来改变表面性能。这种技术也被用于表面硬化产生“表面合金”。 Ion implantation. Ion implantation uses electron beam or plasma to impinge gas atoms to ions with sufficient energy, and embed these ions into atomic lattice of the substrate, accelerated by magnetic coils in a vacuum chamber. The mismatch between ion implant and the surface of a metal creates atomic defects that harden the surface. 离子注入:离子注入采用电子束或等离子体通过真空室内磁性线圈加速以足够的能量将气体原子撞击为离子,并把这些离子嵌入基体的原子点阵中。离子注入和金属表面之间的错配产生了硬化表面的原子瑕疵。 Laser beam treatment. Similar to electron beam treatment, laser beam treatment alters the surface properties by rapid heating and rapid cooling in a very shallow region near the surface. It can also be used in hardfacing to produce “surface alloys”. 激光束处理:与电子束处理类似,激光束处理通过在靠近表面很浅的区域快速加热和快速冷却来改变表面性能。它也可以用于表面硬化产生“表面合金”。 The results of high-energy processes are not well known or very well controlled. But the preliminary results look promising. Further development is needed in high-energy processes, especially in implant dosages an
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 七下沪科数学试卷
- 六年级市质检数学试卷
- 辽宁自考工程数学试卷
- 客户服务课件
- 连云港华杰数学试卷
- 2025年钳工(技师)职业资格考试试卷
- 2025年综合性物流设备租赁及智能管理服务协议
- 2025年税务师考试税法二模拟试卷
- 六年级秋期数学试卷
- 2025年度夫妻财产分割协议执行保障与咨询服务合同
- 氯甲烷泄露应急预案
- 2.PaleoScan详细操作流程
- PLC西门子S7-1200应用技术完整全套教学课件
- 苏州银行总行信息科技部招聘考试真题2022
- 安装电工电气调试员安全技术操作规程
- 2乳的验收与预处理解析
- 柴芍六君子汤加减治疗脾胃病三则
- GB/T 778.1-2018饮用冷水水表和热水水表第1部分:计量要求和技术要求
- GB/T 11547-2008塑料耐液体化学试剂性能的测定
- 伤口造口新进展课件
- 恶性骨肿瘤化疗及注意事项(58张幻灯片)课件
评论
0/150
提交评论