




免费预览已结束,剩余2页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
周练六1. 如图, 已知在三棱柱中,三个侧棱都是矩形,点为的中点 , () 求证;() 求证;() 求异面直线与所成角的余弦值2如图,已知正方形ABCD和正方形ABEF所在平面成600的二面角,求直线BD与平面ABEF所成角的正弦值。AFEBDCABCDA1D1C1B13如图,在棱长为a的正方体ABCDA1B1C1D1中,求:(1)面A1ABB1与面ABCD所成角的大小;(2)二面角C1BDC的正切值(3)二面角4.过正方形ABCD的顶点A作,设PA=AB=a,(1)求二面角的大小;(2)求二面角C-PD-A5. 如图所示,四棱锥PABCD的底面ABCD是边长为1的菱形,BCD60,E是CD的中点,PA底面ABCD,PA.(1) 证明: BE平面PAB;(2) 求二面角ABEP的大小(3)PB与面PAC的角6 如图,在底面为直角梯形的四棱锥,BC=6 (1) 求证:(2) 求二面角的大小.(3)求二面角B-PC-A的大小7如图,直二面角DABE中,四边形ABCD是边长为2的正方形,AE=EB,F为CE上的点,且BF平面ACE.()求证AE平面BCE;()求二面角BACE的大小;()求点D到平面ACE的距离.ABCDP8.如图,在四棱锥中,底面是矩形已知,()证明平面;()求异面直线与所成的角的大小; ()求二面角的正切值 高中数学联赛几何定理梅涅劳斯定理一直线截ABC的三边BC,CA,AB或其延长线于D,E,F则。逆定理:一直线截ABC的三边BC,CA,AB或其延长线于D,E,F若,则D,E,F三点共线。塞瓦定理在ABC内任取一点O,直线AO、BO、CO分别交对边于D、E、F,则 =1。逆定理:在ABC的边BC,CA,AB上分别取点D,E,F,如果=1,那么直线AD,BE,CF相交于同一点。托勒密定理ABCD为任意一个圆内接四边形,则。逆定理:若四边形ABCD满足,则A、B、C、D四点共圆西姆松定理过三角形外接圆上异于三角形顶点的任意一点作三边的垂线,则三垂足共线。(此线常称为西姆松线)。西姆松定理的逆定理为:若一点在三角形三边所在直线上的射影共线,则该点在此三角形的外接圆上。 相关的结果有: (1)称三角形的垂心为H。西姆松线和PH的交点为线段PH的中点,且这点在九点圆上。 (2)两点的西姆松线的交角等于该两点的圆周角。 (3)若两个三角形的外接圆相同,这外接圆上的一点P对应两者的西姆松线的交角,跟P的位置无关。 (4)从一点向三角形的三边所引垂线的垂足共线的充要条件是该点落在三角形的外接圆上。斯特瓦尔特定理设已知ABC及其底边上B、C两点间的一点D,则有AB2DC+AC2BD-AD2BCBCDCBD。三角形旁心 1、旁切圆的圆心叫做三角形的旁心。 2、与三角形的一边及其他两边的延长线都相切的圆叫做三角形的旁切圆。费马点在一个三角形中,到3个顶点距离之和最小的点叫做这个三角形的费马点。 (1) 若三角形ABC的3个内角均小于120,那么3条距离连线正好平分费马点所在的周角。所以三角形的费马点也称为三角形的等角中心。 (2) 若三角形有一内角不小于120度,则此钝角的顶点就是距离和最小的点。判定(1)对于任意三角形ABC,若三角形内或三角形上某一点E,若EA+EB+EC有最小值,则E为费马点。费马点的计算(2)如果三角形有一个内角大于或等于120,这个内角的顶点就是费马点;如果3个内角均小于120,则在三角形内部对3边张角均为120的点,是三角形的费马点。九点圆:三角形三边的中点,三高的垂足和三个欧拉点(连结三角形各顶点与垂心所得三线段的中点)九点共圆。通常称这个圆为九点圆(nine-point circle),欧拉线:三角形的外心、重心、九点圆圆心、垂心,依次位于同一直线上,这条直线就叫三角形的欧拉线。几何不等式1托勒密不等式:任意凸四边形ABCD,必有ACBDABCD+ADBC,当且仅当ABCD四点共圆时取等号。2埃尔多斯莫德尔不等式:设P是ABC内任意一点,P到ABC三边BC,CA,AB的距离分别为PD=p,PE=q,PF=r,记PA=x,PB=y,PC=z。则 x+y+z2(p+q+r) 3外森比克不等式:设ABC的三边长为a、b、c,面积为S,则a2+b2+c244欧拉不等式:设ABC外接圆与内切圆的半径分别为R、r,则R2r,当且仅当ABC为正三角形时取等号。圆幂 假设平面上有一点P,有一圆O,其半径为R,则OP2-R2即为P点到圆O的幂; 可见圆外的点对圆的幂为正,圆内为负,圆上为0;根轴 1在平面上任给两不同心的圆,则对两圆圆幂相等的点的集合是一条直线,这条线称为这两个圆的根轴。 2另一角度也可以称两不同心圆的等幂点的轨迹为根轴。相关定理1,平面上任意两圆的根轴垂直于它们的连心线; 2,若两圆
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 无线业务知识培训内容课件
- 2025年红十字会干校招聘面试模拟题实战演练
- 2025年数据分析师岗位面试指南与常见问题解答
- 2025年航空公司空乘人员招聘面试题及培训指南
- 2025年医卫类药学(师)专业实践技能-基础知识参考题库含答案解析(5套)
- 无损探伤辐射安全知识培训课件
- 刑法考研面试题目及答案
- 2025年高分策略专业预测试题及答法优化技巧
- 2025版青岛限购政策下商品房购房合同
- 新社工面试题目及答案
- 第8课 认识TCP-IP 课件 2025-2026学年七年级上册信息技术浙教版
- 足球裁判规则讲解
- 2025年重庆对外建设集团招聘考试笔试试题(含答案)
- 信访工作心得及改进措施总结报告
- 老年人基础照护护理协助协助老人床椅转移
- 班组人工协议书
- 2025广西公需科目考试答案(3套涵盖95-试题)一区两地一园一通道建设人工智能时代的机遇与挑战
- 2025至2030中国公路养护行业项目调研及市场前景预测评估报告
- 沉淀池安全操作规程
- 职业规划杨彬课件
- 护理人员行为规范
评论
0/150
提交评论