高等工程热力学电子教案(3A).ppt_第1页
高等工程热力学电子教案(3A).ppt_第2页
高等工程热力学电子教案(3A).ppt_第3页
高等工程热力学电子教案(3A).ppt_第4页
高等工程热力学电子教案(3A).ppt_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2 5状态参数熵 第二定律有多种表述 各种表述是等效的 最根本是告诉我们 所有热过程都是不可逆的 它们的发展是有方向性的 当然 不同的热过程有不同的可逆性 但不同的可逆性不是孤立的 彼此是相互联系的 它们有共同的本质特征 因此 可用同一物理量描述这一本质特征 这个物理量就是熵 所以熵是用来描述所有不可逆过程共同特征的热力学参数 是一个状态参数 熵是一个状态参数由卡诺定理 知道可逆热机效率 显然有 或在这个式子的计算中 我们已取了 的绝对值 考虑放热为负后 则有 热力学第二定律 亦即 上式是对卡诺循环的结果 对任意循环怎样 卡诺循环是两条等温线 两条绝热线组成 只有在等温过程才有传热 热力学第二定律 对任意过程组成的循环而言 可用无数条可逆绝热线把该循环分割成无数个微元卡诺循环 对任意微元卡诺循环 abcd 都有 把所有微元加起来 即 亦即 从而可知的积分与路径无关 那么一定为某状态参数 令 取名为熵注意上述的讨论是对可逆过程 所以 热力学第二定律 kJ K J K 下标re代表可逆 比熵为 kJ kg K J kg K 或逆过程的熵变 热力学第二定律 2 6不可逆过程的熵变 熵流和熵产 利用第二定律对热过程方向性的分析和研究 在很多情况下 是利用状态参数熵进行的 熵的本质 不可逆性 是 系统混乱度的量度 热力学第二定律 熵是过程不可逆性的标志 为什么可以用熵来作为不可逆性的标志呢 这是在把可逆过程与不可逆过程比较后发现的 可逆过程时熵变为零 不可逆过程时熵变不为零 熵变越大 熵增加 过程不可逆性越大 引进熵时 利用了可逆卡诺循环的效率公式 在那里指出 对任意可逆循环这时称为熵 卡诺循环与熵的引进 对如图所示的不可逆过程 可用以前相同的分析方法 将循环用无数条绝热线化分 分成无数个微小循环 可用以前相同的分析方法 将循环用无数条绝热线化分 分成无数个微小循环 对每个不可逆循环 卡诺定理指出 其效率 小于同限温差下的卡诺循环效率 即 再考虑系统吸热为负 则可化成 综合全部微元 则有 热力学第二定律 等号对应可逆过程 这就是著名的克劳修斯不等式 熵在上面的定义中 那么 这里的不可逆过程中的与dS有什么关系呢 所以有 热力学第二定律 设有如右图所示的不可逆过程 其中过程 为不可逆过程 为可逆过程另假设有一路径 是可逆过程 那么根据上述分析得 由上两式可得 由于 为可逆过程 按熵的定义 状态变化到 状态时 由克氏不等式 卡诺定理 热力学第二定律 所以 但熵是一个状态参数 变化只与初终态有关 对上面的 或 均有 不可逆时 可逆时 因此可概括为 可见 不可逆过程中熵变不能用 求得 对可逆过程可以用计算熵变 因此 要计算从某初态到终态任何不可逆过程的熵变 只需在初终态间选择任意可逆过程 而利用已选择的可逆过程的来计算 这是最一般的方法 在不可逆过程中 熵变d 大于过程工质的 那么 将这一差值定义为 称为熵产 generationofentropy 热力学第二定律 亦即熵变 一部分是由与外界热交换引起的 为 可正可负 称为熵流 记为d f 另一部分是由不可逆因素引起的 称为熵产d g 恒为正 即 d d f d gd f是传热引起的 可以大于 小于 等于 d g是由不可逆性引起的 只能大于零 d g 不可逆性越大 d g越大 熵变分为两部分 各种不可逆因素不是独立的 第二定律有不同的形式 从这里知道 不可逆性的实质是相同的 均可用d g表示 所以熵产是所有不可逆性大小的共同量度 熵产是所有不可逆性的共同量度 2 7孤立系统的熵增原理 isolatedsystem 孤立系与外界无任何能量与物质交换 即dQ 0熵流等于零 于是孤立系的熵变 d iso d g 也就是说 对任一热力过程 iso 熵增原理 孤立系统的永不减小 可逆时熵变 不可逆时熵变 有了熵增原理 就可用之分析热过程的方向 如果某过程是使孤立系的熵增加了 则过程可行 使熵减少了 则不可行 如果要使熵减少了的过程仍然可行 必须进行补偿 补偿的最少也要使熵变为零 熵增原理 可以推广到社会科学领域 普利高津 城市学 经济学 生物学等领域 孤立系统熵增原理表述 孤立系统经历状态变化时总能量保持不变 而系统的熵值增大 至少要保持不变 永远不可能减小 这一结论被称为孤立系统的熵增原理 孤立系统熵增原理是人类对物质世界客观规律认识的总结 虽然对它只能给予经验的证明 但其正确性却可以从它符合客观事实的推论得以验证 热力学第二定律 自发过程进行的方向和限度 一切自发过程都是不可逆的 总是向着总熵增加的方向进行 自发过程都是由非平衡态趋向平衡态的过程 因此达到稳定的平衡态时系统的熵将达到最大值 根据孤立系统熵增加原理 自发过程必然满足 达到平衡时成立 热力学第二定律 吉布斯佯谬 热力学第二定律 问题背景 两种不同的气体混合会产生混合熵增 其值大小与气体种类无关 而混合同种气体不会产生混合熵增 问题提出 将两种混合气体的分子换成黑白两色的球 其混合必然产生混合熵增 设想将黑球一次一次漂白 使其颜色逐渐变浅 但只要其与白球仍有区别 则混合熵增不变 设想当漂白至与白球无法分辨时 究竟混合是有熵增还是没有熵增 吉布斯佯谬 热力学第二定律 物理解释 微观世界里粒子的全同性是由物质结构的离散性来保证的 在现实世界里不可能存在由一种物质连续变化成另一种物质的可能性 如氧气分子不可能连续转变为氮气分子 麦克斯韦妖 热力学第二定律 问题背景 温度不同的气体混合会逐步达到温度均匀的平衡态 这是个熵增加的不可逆过程 其相反过程即处于温度均匀的平衡态的气体自发地分成温度不同的部分而使熵减少是不可能的 麦克斯韦妖 热力学第二定律 问题提出 小精灵 麦克斯韦妖 把守住气体容器内隔板上的一个小门 假设隔板绝热 小门没有摩擦 小精灵可以判断分子运动速度和轨迹 他只允许左侧运动速度高的分子到右侧 这样无需作功 经过一段时间可达到使左侧温度降低并使右侧温度升高的效果 孤立系统的熵减少了 物理解释 1929年 匈牙利物理学家西拉德 L Szilard 发现 小妖至少需要一个温度与环境不同的光源照亮分子 才能获得所需的分子速度信息 正由于获取信息时的能量付出 即负熵的流入 才达到了系统熵减少的效果 2 8能量的品质与能量的贬值原理 热量的间接利用的目的 获取功量 因此 功是人类最可贵的能源 它的可变性也最好 可随意地转变为其它的能量 因而功的能量品质最高 在此 能量不但有数量的多少之分 更有品质的高低之别 能量的品质以它能转换为功的比例决定 转换的比例越高 品质越高 于是 热能Q的品质与它的温度有关 温度高 品质高 能量的贬值原理 任何自发的热过程 都只向着能量品质降低的方向发展 理想情况下 品质不变 火用 exergy 概念可以说就是根据上述能量的贬值原理引进的 下面章节着重讨

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论