




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
管翅式换热器性能及结构综合优化的热设计方法管翅式换热器性能及结构综合优化的热设计方法陈维汉 周飚华中科技大学能源与动力工程学院摘要:本文给出一种由翅片(或肋片)管组成的管翅式换热器的优化设计新方法。该方法的理论依据是给定换热器结构材料而使的换热量最大的两侧换热表面的最佳匹配准则和两侧流体流动换热过程最佳的结构尺寸准则,以及使可用能损失率最小的最佳运行参数准则。利用三个准则间的关系,采用迭代方式完最终成换热器的优化设计。这样的设计方法能使换热器的设计达到材料省、换热效果好与运行费用低的目的,且能在设计阶段实现。关键词:管翅式换热器、换热表面间的最佳匹配准则、换热过程最佳结构参数准则、换热过程可用能损失率分析、考虑综合性能的优化设计法图书分类号:TK1241 引 言管翅式换热器是广泛应用的热交换设备之一。它常常应用在两侧流体的换热性能相差甚大的情况下,通常是以管外侧安装翅化表面来减小换热性能较差流体的换热热阻,而换热性能较好的流体在管内流动仍然保持较小的换热热阻,从而达到整体增强换热器传热效果的目的。对于这样的换热器,如何去设计和运行是摆在工程技术人员面前的首要问题。对于换热表面的设计,传统的做法是力求使两侧的换热热阻相同以获得最大的传热效果,这是等热阻匹配原则1。这种认识如果从投资成本上来考虑,就是十分不可取的办法。本文作者曾针对这一问题进行过专门的分析,导出了在给定投资费用(或换热面材料)的前提下两侧换热表面的最佳匹配关系式,即换热面积之比与其换热性能比和投资费用比之间的平方根关系式,这是平方根原则2。按这种原则设计换热面就能达到单位传热量的投资成本最低,从而实现结构设计的优化。同时,换热器设计的另一个问题是流动参数的设计。传统的做法是以不超过允许的阻力损失为最后标准来选取流动参数。这种做法人为因素的影响很大。正确的办法是以单位传热量可用能损失率最小为目标来寻求流动参数的最佳值3。这样就能实现单位传热量的运行费用最低,从而使流动参数的设计得以优化。最后,当要确定换热器尺寸时,翅片管管长和管排数目可以分别针对各自换热过程以给定材料换热量最大导出最佳结构参数来确定4,5。综合结构参数与流动参数的优化设计,就可以完成管翅式换热器的综合性能优化设计的工作。综合性能优化设计的具体做法是,选定换热器的结构形式、翅片管的结构参数、及流动类型,以可用能损失率最小为目标首先确定管内流体的最佳流动参数,且以此计算出最佳的换热性能参数,同时可以计算出最佳的管长管径比这也就定下了管内流体流动方向上的尺寸;再设定安装翅片的管外侧(即肋化侧)换热性能参数以换热表面最佳匹配关系确定换热器两侧换热表面积的比值,以此计算出安装翅片一侧的结构尺寸,进而可对其进行可用能分析而得出最佳流动参数并由此计算出换热性能参数;以新得到的换热性能参数取代设定值重复以上的计算,直至前后两次相差甚小而得出收敛的结果;在翅化表面一侧的结构参数以收敛结果确定之后,以最佳的流动参数计算出最佳的管排数,以此就能定下管外流体流动方向上换热器的结构尺寸;还有一个方向上的尺寸由传热量及传热温差来确定。经过这样的设计计算步骤就能达到管翅式换热器的结构参数与流动参数的同时优化,从而做到设计的管翅式换热器具有结构(成本)省、运行费用低而换热性能佳的良好性能。下面将具体对优化方法进行讨论。2 换热器传热过程综合性能分析评价准则为了介绍管翅式换热器优化设计方法,对其涉及到的传热过程的优化分析理论基础有一个基本了解是必要的。这里将作者导出的传热过程两侧换热表面积的最佳匹配关系式、换热过程的可用能损失率关系式和结构参数优化的关系式作一个简单的介绍。2.1传热过程的换热表面最佳匹配准则2AA1A2121u12u2图1 换热器传热过程示意图对于如图1所示的充分简化的换热器的传热过程而言,投资费用与换热面的结构特征相关,而结构特征又与传热性能密不可分。因此,我们就能够从换热器传热过程的传热方程和投资费用方程出发导出换热器换热表面与换热性能之间的最佳匹配关系式。对于如图所示的换热器传热过程,其传热方程可用热阻形式表达如下:,(1)而换热表面的投资费用方程,则可表示为:。 (2)在以上两式中:R为传热过程的总热阻;Pt为传热表面的投资费用;分别为换热器两侧的换热系数、单位表面的费用和换热表面积。将(2)式代入(1)式可得:。 (3)对(3)式求A1的导数并令其为零,有,再用(2)式消取上式中的Pt,经整理得出:。 (4)上式即为换热器两侧换热性能和投资单价不随换热表面而改变情况下的换热表面随换热性能和投资单价变化的关系式,可称之为传热过程的换热表面最佳匹配准则或最佳结构匹配准则。这里令,它们分别表示换热器两侧的换热系数比,投资单价比及换热表面积比。于是换热器传热表面的最佳匹配关系式可以改写为如下简洁的形式:。 (5)分析一下上面的匹配关系式不难发现,当换热器两侧换热性能不同时,两侧的换热表面也要发生相应改变以获得最佳的换热效果。但是由于考虑了投资成本,这种改变不再是按照线性比例关系,而是要按上式进行计算。如果考虑扩展表面的效率,肋面效率必须乘以换热表面而构成有效换热表面积。这里假定为肋化表面为A1,肋面效率为1,于是最佳匹配关系改写为。 (6)由肋面效率的定义,在这里可以写为式中f为肋片效率,于是得到如下迭代关系式(7)2.2 流动换热过程的可用能损失率方程3dAthh+dhmTfs+dssTwdQp1p2图2 一般流动换热过程示意对于一般的流动换热过程(如图2所示),总可以视之为一个稳定的流动换热系统,其包含流体沿固体壁面的流动过程和流体与壁面间的换热过程。相应的参数有:流体的比焓h、比熵s、质量流率、流体温度Tf、壁面温度Tw,、流体进出系统的压力分别为p1和p2、流体与壁面间的换热热流密度q、以及流体的通流面积和换热面积分别是Af与At。今在流场中取一包含微元面积dAt的微元控制体,将其视为一个稳定流动系统,分析其热平衡和熵平衡情况。由热力学第一定律有和 , 式中,Q为通过换热面的热流量;为流体流过壁面的换热系数;为流体质量流率。由热力学第二定律有,式中:S为系统的熵产率,单位为W/。利用以上关系式,同时认为热力学关系式(式中为流体的密度)成立,就可整理得出:,式中定义:温度差和平均温度。在整个换热面上积分上式,且假定换热系数为常数,可以得到:,式中,为系统进出口压力之差。此式为流动换热过程的熵产率的表达式,从中不难看出,过程的熵产率由两个部分构成,即由换热温差引起的熵产率和由流动压差引起的熵产率,它们反映出流动换热过程的不可逆性。按照可用能(火用)损失率的定义ET0S(T0为环境参考温度),代入上式则得出流动换热过程的可用能(火用)损失率方程,上面方程右边的第一项为温度差引起的可用能损失率而第二项为压力差引起的可用能损失率。为了流动换热过程可用能损失率分析的方便,通常将这个方程无量纲化。在无量纲化的过程中引入无量纲可用能(火用)损失率数,它表示单位换热热流量的系统可用能损失率,引用了Q=AtT和(其中Af为流体通流面积,uf为流体的平均流速)这两个关系式,且定义流动阻力系数, 结果变为如下两种形式:对于给定热流密度和换热特征尺寸有 ,(8)对于给定热流密度和流体流速有 ,(9)式中,为换热热流密度,为努谢尔特数,为雷诺数,为斯坦登数,L为流场特征尺寸,为流体导热系数,为流体运动黏度,cp为流体定压比热,分别为温度因子,而则为面积因子。我们把这两个公式称为流动换热过程的可用能损失率方程。从中不难看出,无量纲的可用能损失率Ne的大小与流动换热特征参数(准则数)Nu,St,Re及cD是密切相关的。对于一个流动换热过程而言,无量纲的可用能损失率越小过程的流动换热性能就越好。因此,通过这两个关系式就可以找出各种流动换热过程的可用能损失率随着过程特征参数的变化关系,并从中导出使过程可用能损失率最小的最佳过程参数和结构参数。说得具体一点,利用(8)式,在给定换热热流密度(q)和过程的结构特征(L)的条件下可以导出使可用能损失率最小的最佳运行参数(Re或uf);而从(9)式中,在给定换热热流(q)和过程的运行参数(Re或uf)的条件下可以导出使火用损失率最小的最佳结构特征(L)。这里将对具体流动换热过程进行可用能损失率分析而寻求最佳的过程运行参数。从对流换热过程的分析中我们可以设定流动换热过程准则关系式的一般形式:换热关系式 (10),和流动阻力关系式 (11)。将它们代入方程(8)得出在给定换热热流密度和换热结构尺寸下无量纲火用损失率Ne随流动准则Re的变化关系式为 。 (12)将上式对Re求导数且令其为零,即有,我们就可以得出无量纲火用损失率最小时对应的最佳雷诺数(Reopt)值,也就是最佳的过程运行参数,即。(13)将(13)式代入无量纲火用损失率Ne的表达式(12)中就可以得出最小无量纲火用损失率Nemin的计算式,而将其代入(10)式则可得到最佳的努谢尔特数Nuopt,进而计算出过程最佳的对流换热系数opt。对于一个流动换热过程当给定换热热流和换热特征尺寸之后,就可以利用上述方法而获得最佳的运行状态及相应的换热性能。显然,对于管翅式换热器两侧的流动换热过程也可以利用这一方法而得到相关的优化数据,成为其综合性能评价的一个重要环节。如管内紊流流动换热时换热准则公式为:,而管内流动阻力计算的准则关系式为:,有。将上面两式代到公式(13)之中,得出最佳雷诺数的计算式为:。(14)这就是流体在管内紊流流动换热时基于火用损失率最小而导出的最佳运行参数(Reopt数)的表达式。对于外侧流体流过翅片管束的流动与换热过程,其换热准则关系式不同的文献给出的关系式是各不同的,且在不同的Re范围其表达式也不同。这里以雷诺数在的范围为例进行分析。在此范围内正三角叉排翅片管束的换热准则关系式7的变形,即,式中考虑了原准则关系式中采用而在本文中采用的偏差修正项,且设定。而在此范围内的流动阻力准则关系式8为,式中。又因为以及,式中。将以上关系式与前述的标准准则形式,即(10)和(11)两式,进行比较可以得出:,; ,。 把上述关系式代入最佳运行参数表达式(13)中得出:。 (15)这就是流体流过正三角形叉排翅片管束时基于火用损失率最小而导出的最佳运行参数(Reopt数)的表达式。在上述两个最佳运行参数下就可以使管翅式换热器两侧流体流动换热过程分别达到流动特性与换热性能之间的最佳配合。2.3 管内流动换热过程的最佳管长管径比4图3给出一个管内流动换热的示意图。设管壁温度均匀一致为TW,流体进口温度为,经过管长L后出口温度为,管内、外径分别为di和do,壁厚为,流体截面上的平均流速为um。引入过余温度及,在管子长度为x处取一个微元长度dx,利用dx元体内的能量平衡可以得出管内流动换热方程为:TfQxQx+dxQcumdiTfTwxdxL图3管内流动换热示意图 。当换热系数与管长L无关时,方程的解为:,对于整个管长可以得到:,于是整个管长内的对流换热量为:。(16) 为了获得经济的管长管径比,应该是在给定管材的体积下实现管内流动换热过程的换热量最大。在管壁较薄的情况下,管材体积为,于是有,将其代入(16)式得到:。 当换热系数与管径大小无关时上式可写为:, 式中,。对管子换热量Q求管内径di的导数,并令其为零,即,就可以得到给定管材体积情况下的换热量最大的管子结构尺寸,即值或值。完成以上工作得到:。(17)从(17)式可见,只有Z=0才能得到最经济的管子结构,也就是换热最大或投资成本最低的情况。但是Z=0,意味着di或者L0,但这也是不现实或不可取的。 实际上,在管内流动换热过程中,换热系数和管径di及管长L相关的,通常我们换热计算中选取的换热系数是相应管长的平均值,可以将视为与L无关,但仍然是管径di的函数(对于充分发展的管内流动)。 对于充分发展的层流管内流动,换热计算关系式为:Nu=3.66即将其代入(16)式得到:式中,,。在上式中对热流量求管径的导数并令其为零,可以得出最经济的Z值关系式:,式中。经迭代可以求出Z=0.7628,于是有:。(18) 对于充分发展的紊流管内流动,换热计算关系式为:,即,式中,将其代入换热方程(16)得到:式中,为获得最经济管子结构参数令,得到Z值关系式:,式中 。迭代求解上式得出Z=0.1877,于是有:(19) 从关系式(18)和(19)式可以看出,的值在通常情况下均没有进入管内充分发展区,而处于进口区,此时管内流动换热计算式就不能采用上面的公式。对于管内紊流流动,通常进行相应的管长修正,即将按长管计算的换热系数换成:,于是有:。采用文献4的做法得出:。(20)上式即为考虑管长修正的管内紊流流动换热的最经济的管长管径比。2.4 流体流过翅片管束的流动换热的过程的最佳管排数5对于流体绕流翅片管束的流动换热过程,总可以在给定换热面积或体积的条件下力求使其换热性能最佳,从而产生最佳的换热结构尺寸。一个简单的顺排翅片管束的流动结构如图4所示。图4 顺排排列管束的流动换热示意图S1dbS2TWNTfuTfMdAtd0图中u为进口处的质量流速,Tf和Tf分别为进、出翅片管束的流体温度,S1和S2分别为横向与纵向的管间距,db为管子的外直径,d0为环形翅片的外直径,Tw为管壁温度,M和N分别为横向与纵向的管排数。今在流场方向上一个S1间距内取一个换热微元面积dAt,如图中虚线所示。由于在一个纵向间距S2内有的换热面积(认为管高H方向上换热均匀,且有nh个间距为bs厚为的环形翅片),因而有,计算中忽略了翅片厚度的影响。于是一个宽S1流道内的翅片管微元面积上的热平衡可以表示为:,式中,为流体定压比热,为流体与管壁间的换热系数。整理上式得到。对上式进行全流程L积分得出:。从此式可以求得整个翅片管束的换热量为,(21)式中已将代入。对于叉排也有类似的情况,因为在一个S1和S2构成的框架内不论顺排与叉排均有相同的管周长,也就是有相同的换热面积。虽然如此,对于给定相同的换热面积采用不同的S1和S2可以构成不同的管排数结构,如S1S2管排结构是宽度大而纵向排数少,S1S2则是宽度小而纵向排数多。这样的差异会影响到整体的换热效果和流动特征。因此,可以在MS1和NS2为定值,即单位深度的体积为定值的条件下,得出使换热量达到最大值的S1和S2的数值,即最佳的结构尺寸。这也意味着在相同的投资成本下获得最好的换热效果,因而最佳的结构尺寸就是最经济的结构尺寸。由于一个S2对应着一个的换热面积,那么为常数与为常数是等效的。因此,令为相当体积,从而使公式(21)变为。从上式可见,在给定体积的前提下如果管长H给定,横向管排数M与横向节距S1间存在依变关系,当设定排数M后节距S1成为寻优的目标。为此可进一步将上式改写为, 式中,。因此,要在给定换热管束的体积(即)下使传热量最大,可以求Q对S1的导数并令其为零,得出,即=。求解此超越方程得到,将C2及Vd的表达式代入得出: ,可改写成 或 ,(22)式中,称为斯坦登数,其中的、分别是努谢尔特数、雷诺数和普朗特数,式子中的为流体导热系数、为流体运动黏度而为流体的热扩散系数。这就是在给定结构体积条件下使换热量最大的最佳结构尺寸与换热性能之间的关系式。注意到(22)式与文献6的结果只相差一个翅片的修正项,可称为翅片管束的有效翅化比。由于反映换热性能的斯坦登数St又是与换热过程的流动特征密切相关,那么此式亦能反映出结构特征与流动参数之间的关系。换热性能与流动特征间的关系反映在换热准则关系式中,因而可以将准则关系式代入上述最佳结构参数式中,从而导出最佳结构参数随流动参数变化的关系式,也就是换热参数与运行参数间的关系式。如对于流体流过正三角形叉排翅片管束时7:, 式中也考虑了原准则关系式中采用因而在本文中采用的偏差修正项,且设定。将上式代入经济管排数关系式(22)中,可以得出:。(23)3 管翅式换热器的结构特征及性能优化3.1 结构特征及导致的流动特征管翅式换热器的一般的结构特征如图3所示。在由翅片管平行排列组成的换热结构中一侧流体在管内流动,而另一侧流体在垂直于翅片管的管间流动。因此,任意一根翅片管就构成一个管翅式换热器的基本单元。这也是本文分析讨论的对象。这里设定为翅片管的内直径 ,为翅片管的外直径(即管基直径db),为环翅片的外直径,那么翅片高度就为,翅片厚度设为,翅片间距设为bs。为了研究问题的便利这里仅仅分析讨论换热器的一个最小单元,即一个翅片间距bs所对应的两侧几何结构与流动传热性能。分析该单元不难看出,两侧单位深度的换热面积分别为和A2=d2bs,管内流体的换热面积A2传递的热流量会再通过管外翅片侧换热面积A1传给翅片侧流体,在这里热量的传递是经过翅片面积和肋基面积与流体换热而实现的(计算中忽略翅片厚度的影响)。由于管翅式换热器单元的结构,有换热面积比,从中也可以得出。翅片管束采用正三角形排列,如图5c所示,结构尺寸如前面所述。1u2umWLHHd0d2d11u2umbsS1S2a换热器整体结构示意图图5管翅式换热器结构示意图b单根翅片管结构示意图c翅片管束排列示意图3.2 综合性能优化设计的方法与步骤优化设计计算从无翅片侧的管内流动换热计算开始,设定翅片管内直径d2的数值,利用公式(14)计算管内流动换热过程可用能损失率最小时的最佳运行参数值,即。式中下标“2”表示管内侧的几何量和流体物理量,进而应用换热准则关系式计算出流体与管壁间最佳的换热系数值2opt。同时利用关系式(20)在此处的表达式而得出经济管长数值。当设定翅片侧流体与翅片管间的换热系数1值之后就可以利用换热器结构参数与换热性能间的最佳匹配关系式(6)得出两侧换热面积比(此处没有考虑成本费用的差异),式中为翅片管翅化效率,通过迭代得到并以此来确定翅片侧的结构尺寸。由设定的换热系数1值可以计算翅片的无因次特征尺寸mh1=21/(s)1/2h1,式中s为翅片材料的导热系数。按照环形翅片结构的特征mh1的最佳数值约为0.75左右,其对应翅片效率f=0.70,于是得出翅片高度h1=(d0-d1)/2=0.751/(21)1/2。在环形翅片的厚度给定的条件下,环形翅片的外直径d 0就可以在给定管外直径d1的情况下而得到。于是可以设定翅片管束的排列方式而定下其结构尺寸。这里设定横向间距S1=d0,在管束按正三角形排列下就可计算出横向间距比和纵向间距比及纵向尺寸S2。同时翅片间距也可有关系式而求得。于是在翅片管侧的结构特征确定之后,其最佳运行参数值就可由(15)式计算,即。 式中下标“1”表示翅片管侧的几何量和物理量。以就可从换热准则关系式中计算出。用新计算出的代替设定值重新计算出换热面积比=(A1/A2)=(11/2)-1/2,重复上述计算直至重新得出。上述重复计算工作直到前后两次计算结果仅相差一个设定的小量时就结束。在以上计算中应注意,热流密度设定以管内侧为准,以及两侧之间的换算,即。此时再利用关系式(23)求得经济管排数值,即。最后整化上面计算所得的数据,最后完成管翅式换热器综合性能的优化设计工作。3.3 管翅式换热器优化设计的一个典型算例为了更加说明管翅式换热器综合性能优化的全过程,这里以水和空气间的流动传热过程为例设计一个简化的管翅式换热器。按照上面所述的计算步骤,设定水在管内流动而空气在有翅片管外横向流动 ,水的物性参数为2=995.7 kg/m3,cp2=4174 J/(kg),2=0.618W/(m),2=0.80510-6 m2/s,Pr2=5.42;空气的物性参数为1=1.165 kg/m3,cp1=1005 J/(kg),1=0.0267 W/(m),1=16.0010-6 m2/s,Pr1=0.701。为了计算上的便利忽略温度因子的影响,且设定平均温度Tm=303 K。设水侧管内直径为d2=22mm,对于紊流管槽内的流动换热过程,其准则关系式分别为:换热关系式和流动阻力关系式 ,因而得出a2=0.023、n2=0.8、k2=0.4、b2=0.046、m2=0.2。利用 (13) 式在设定下可以计算出管内水流动的最佳雷诺数值。进而从得到,和换热系数。 同时可以算出经济管长管径比,也就是经济管长。基于上述计算,设翅片管束与空气间的换热系数1=50W/(m2),可在1=f=0.7假设下得面积比=A1/A2=(11/2opt)-1/2=14.11,以此可以计算,经过迭代。此时可以选择空气侧的翅片参数了。对于环形翅片,在给定f=0.7时有结构特征参数值mh1=0.75,由mh1= 21/(s)1/2(d0-d1)/2,如果假设翅片材料为合金铝,其导热系数s=174W/(m),取厚度=0.2mm,就可以计算出环形翅片外直径与翅片管外直径的差值d0-d1=1.5/21/(s)1/2=0.02798,如设定翅片管的外直径=0.025m,那么环形翅片外直径d0=0.05298m。此时可以布置翅片管排列,如上述设定横向间距S1=d0=0.05298m,在管束按正三角形排列下就可计算出横向间距比=2.1193和纵向间距比=1.8354及纵向尺寸S2=0.04588m。由可以算出于是在翅片管侧的结构特征及换热热流密度确定之后,其最佳运行参数值就可由(15)式计算,即。 以就可从换热准则关系式中计算出新的换热系数值。用新计算出的换热系数值代替假设值可重新求出= 13.657, d0-d1=0.0275m,和d0=0.0525m。同样布置下有S1=d0=0.0525m,横向间距比=2.1003和纵向间距比=1.8189及纵向尺寸S2=0.04547m。由可以算出,进而算出和。计算结果基本上收敛。为了检验计算过程的收敛情况,这里重新假定空气与翅片管间的换热系数值,有= 11. 127, d0-d1=0.02365m,和d0=0.04865m。同样布置下有S1=d0=0.04865m,横向间距比=1.946和纵向间距比=1.6853及纵向尺寸S2=0.04213m。由此可以算出,进而计算得出和。以新换旧重复计算得出:= 13.6526,1= 0.7219, d0-d1=0.0275m,d0=0.0525m,S1=d0=0.0525m,=2.0999,=1. 8186,S2=0.0455m,从上面的结果可以看出,不论是从大换热系数还是从小换热系数假设都能得出收敛的优化结果。利用上面的设计计算数据进行整化工作,并最后计算最佳翅片间距值和最佳纵向管排数值。最后将整理的数据列在表1中。至此就完成了整个管翅式换热器综合结构、流动与传热参数优化的热设计工作。这种设计方法在进行的过程中仅仅采用了两种人为设定参数,即热流密度和翅片管的几何尺寸,且这类数据极易于改变而得出更多种的选择;而获得的重要设计参数却是有其理论根据。因此,这种方法要远远优于常规的优化设计方法。表1管翅式换热器综合性能优化设计数据列表翅片管内直径d2水侧热流密度q2水侧雷诺数Re2水侧换热系数2翅片管长度H0.022m10000W/m24720321046967.4W/(m2)1.05m翅片管基直径d1翅片厚度翅片效率f翅化效率1换热面积比=A1/A20.025m210-4m0.700.72213.66翅片高度d0-d1环形翅片外直径d0翅片管翅片间距bs管束横向间距比S1/d1管束纵向间距比S2/d10.0275m0.0525m3.8710-3m2.101.82气侧热流密度q2气侧雷诺数Re1气侧换热系数1翅片管束纵向管排数N换热器宽度1014W/m21762.4051.70 W/(m2)2.46(取3)(由热负荷定)参考文献(1) 罗森诺 W H 传热学应用手册(上) 北京:科学出版社 1992(2) 陈维汉:换热器两侧表面最佳匹配的一般化推导,华中理工大学学报;1999年,27(sup1)(3) 陈维汉、孙毅:传热过程火用 损失率方程及参数优化,华中理大学学报;1996年.24(Sup1)(4) 陈维汉:管内流动换热过程的性能综合分析,华中理大学学报;2001年.29(Sup1)(5) 陈维汉、周飚:流过管束的流动换热与结构的综合性能评价,华中科技大学学报;2004年,32(2)(6) 陈维汉、周飚:一种流体流过管束传热的综合性能评价方法,化工装备技术;2003年,24(2)(7) D. E. Briggs, and E. H. yong: “Convective heat transfer and pressure drop of air flowing across triangular pitch banks of finned tubes”Chem. Eng. Symp. Series, Vol. 59, No. 41, 1963(8) K. K. Robinson, D. E. Briggs:“Pressure drop of air flowing across triangular pitch banks of finned tubes” Chem. Eng. Symp. Series, Vol. 62, No. 64, 1966An Optimal design Method in consideration of structure-size and Performances for a finned tube heat exchangerChen Weihan Zhou BiaoCollege of Energy resource & Power Engineering, HUST, Wuhan, ChinaAbstract: An Optimal design Method of finned tube heat exchanger has been given, in which the structure characteristic and performances of the fluid flow and the heat transfer have been considered comprehensively. In order to achieve the design work the optimal m
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 富马酸吉瑞替尼片临床应用考核试题
- 2025年高压电工基础理论考试模拟试题卷
- 2025年统计学期末考试题库:统计数据可视化在生态学数据分析中的应用试题
- 2025年高压电工考试题库:高压设备故障诊断电气设备评价试题
- 2025年健身教练职业技能考核试卷:健身教练健身行业市场营销市场细分与定位试题
- 2025年咖啡师职业技能测试卷:咖啡师服务礼仪与沟通试题
- 2026届江苏省无锡市东湖塘中学数学七年级第一学期期末复习检测试题含解析
- 2025护肤品销售代理合同范本
- 高考化学试题分析与答题技巧
- 2025年小学操场看台及跑道建设合同
- 马克思主义经典原著选读-1
- 《书愤》课件-【中职专用】高二语文(高教版2023职业模块)
- 邻里中心项目策划工作建议书框架及标准格式
- 人工智能通识 课件 第七章 智能之躯-具身智能
- 妈妈驿站加盟合同范本
- T/CUWA 60055-2023城镇排水管道螺旋缠绕内衬法修复用硬聚氯乙烯(PVC-U)带状型材
- DB62T 25-3016-2016 建筑工程资料管理规程
- 专题06 对角互补模型(原卷版)
- 2025勤工俭学合同范本
- 《职业生涯概述》课件
- 企业会计准则实施典型案例
评论
0/150
提交评论