



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
太原科中高一必修1导学案(数学)课题:2.1.1 指数与指数幂的运算(1) 编制人:梁月娇 审核人:张敏 时间: 学习目标 1. 了解指数函数模型背景及实用性、必要性;2. 了解根式的概念及表示方法;3. 理解根式的运算性质 。重点难点重点:根式的运算性质。难点:根式的概念。 学习过程 一、课前准备(预习教材P48 P50,找出疑惑之处)复习1:正方形面积公式为 ;正方体的体积公式为 .复习2:(初中根式的概念)如果一个数的平方等于a,那么这个数叫做a的 ,记作 ; 如果一个数的立方等于a,那么这个数叫做a的 ,记作 . 二、新课导学 学习探究探究任务一:指数函数模型应用背景探究下面实例及问题,了解指数指数概念提出的背景,体会引入指数函数的必要性.实例1. 某市人口平均年增长率为1.25,1990年人口数为a万,则x年后人口数为多少万?实例2. 给一张报纸,先实验最多可折多少次?你能超过8次吗?计算:若报纸长50cm,宽34cm,厚0.01mm,进行对折x次后,求对折后的面积与厚度?问题1:国务院发展研究中心在2000年分析,我国未来20年GDP(国内生产总值)年平均增长率达7.3, 则x年后GDP为2000年的多少倍?问题2:生物死亡后,体内碳14每过5730年衰减一半(半衰期),则死亡t年后体内碳14的含量P与死亡时碳14关系为. 探究该式意义?小结:实践中存在着许多指数函数的应用模型,如人口问题、银行存款、生物变化、自然科学.探究任务二:根式的概念及运算考察: ,那么就叫4的 ;,那么3就叫27的 ;,那么就叫做的 .依此类推,若,,那么叫做的 .新知:一般地,若,那么叫做的次方根 ( th root ),其中,.简记:. 例如:,则.反思:当n为奇数时, n次方根情况如何?例如:,, 记:.当n为偶数时,正数的n次方根情况? 例如:的4次方根就是 ,记:.强调:负数没有偶次方根;0的任何次方根都是0,即.试试:,则的4次方根为 ; ,则的3次方根为 .新知:像的式子就叫做根式(radical),这里n叫做根指数(radical exponent),a叫做被开方数(radicand).试试:计算、.反思:从特殊到一般,、的意义及结果? 结论:. 当是奇数时,;当是偶数时,. 典型例题例1求下类各式的值: (1) ; (2) ; (3); (4) ().变式:计算或化简下列各式.(1); (2).推广: (a0). 动手试试练1. 化简.练2. 化简.三、总结提升 学习小结1. n次方根,根式的概念;2. 根式运算性质. 知识拓展1. 整数指数幂满足不等性质:若,则.2. 正整数指数幂满足不等性质: 若,则; 若,则. 其中N*. 学习评价 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 当堂检测(时量:5分钟 满分:10分)计分:1. 的值是( ).A. 3 B. 3 C. 3 D. 812. 625的4次方根是( ). A. 5 B. 5 C. 5 D. 253. 化简是( ). A. B. C. D. 4. 化简= .5. 计算:= ; . 课后作业 1.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 平房改建升级方案(3篇)
- 门楼改造方案(3篇)
- 农村破败房处理方案(3篇)
- 轻轨防护施工方案(3篇)
- 医院感染防控体系建设
- 薪酬绩效设计方案(3篇)
- 细胞解读课件
- 项目汇报课程总结
- 新建墓地实施方案(3篇)
- 细胞旁途径图解
- 苏教版五年级上册《科学》全册教案
- 金属与石材幕墙工程技术规范-JGJ133-2013含条文说
- JJG 1114-2015液化天然气加气机
- GB/T 4857.17-2017包装运输包装件基本试验第17部分:编制性能试验大纲的通用规则
- GB/T 23469-2009坠落防护连接器
- GB/T 13477.11-2017建筑密封材料试验方法第11部分:浸水后定伸粘结性的测定
- 语文课程与教学论课件
- LTD2100探地雷达技术培训探测过程课件
- CCU二月份理论考试试题
- 医疗器械生产质量管理标准标准教材
- Q∕GDW 12106.3-2021 物联管理平台技术和功能规范 第3部分:应用商店技术要求
评论
0/150
提交评论