




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
三角形全等的判定“边角边”判定定理 教学设计教学内容:本节课的主要内容是探索三角形全等的条件“边角边”以及利用“SAS”判定定理证明三角形全等。教学目标:1、知识与技能:探索、领会“SAS”判定两个三角形全等的方法2、过程与方法:经历探索三角形全等的判定方法的过程,能灵活地运用三角形全等的条件,进行有条理的思考和简单推理,并能利用三角形的全等解决实际问题,体会数学与实际生活的联系。3、情感态度与价值观:培养学生合理的推理能力,感悟三角形全等的应用价值,体会数学与实际生活的联系。重难点与关键:1、重点:会用“边角边”证明两个三角形全等。2、会正确运用“SAS”判定定理,在实践观察中正确选择判定三角形的方法,既是难点也是关键点。教学方法:采用“操作-实验”的教学方法,让学生有一个直观的感受。教学过程:1、创设情境。复习全等三角形的性质,复习提问SSS判定定理以及构成全等三角形的六个元素,列举单独的一个或两个元素不能判定两三角形全等。要三个元素有SSS、SAS、ASA、AAS。(AAA、SSA)2、导入新课活动1:画ABC,B=60 BC=20cm.AB=15cm,用剪刀剪下来,看一下同桌的两个同学的图形能否完全重合。引导学生去观察所画的边与角有什么特殊关系由活动1:让学生去猜想并归纳出“SAS”定理。边角边判定定理:两边和它们的夹角对应相等的两个三角形全等(简写成“边角边”或“SAS”)活动2:在ABC与ABC中,若AB=ABAC=ACB=B,观察ABC与ABC是否全等。(强化类比“SAS”)由学生观察总结出“边角边”不一定能判定两三角形全等。所以“SAS”定理一定是两边及两边的夹角对应相等才能判定两三个角全等。A3、例题讲解:1例、若AB=B,=D2B求证:ABCDC分析:拓展:由两个三角形全等还可以得出什么样的结论?例、已知:点分别是,的中点,BOA求证:ABCDDC4、练习:已知AB=,且AB,=DA求证:ABCEFB小结:、根据边角边定理判定两个三角形全等,要找两边及夹角对应相等的三个条件。、找出结论成立所需条件,要充分利用已知条件(包括图形中的隐含条件,如公共边、公共角等)并要善于运用学过的定义、定理。教学反思本节课的设计力求体现使学生“学会学习,为学生终身学习做准备”的理念,努力实现学生的主体地位,使数学教学成为一种过程教学,并注意教师角色的转变,为学生创造一种宽松和谐、适合发展的学习环境,创设一种有利于思考、讨论、探索的学习氛围,根据学生的实际水平,选择恰当的教学起点和教学方法。由此我采用“问题猜想探究应用”的学科教学模式,把主动权充分的交给学生,让学生在自己已有经验的基础上提出问题,明确学习任务,教师引导学生观察、发
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 五 总复习说课稿-2025-2026学年小学数学二年级下册浙教版
- Unit 3 写作说课稿 2024-2025学年沪教版英语七年级上册
- 2025年合同终止协议的样本
- 2025建筑材料商品混凝土供求合同
- 2025河南省农业生产设备租赁合同
- 2025合伙经营合同范本
- 2025企业采购销售合同
- 人教版部编道德与法治八年级上册3.1维护秩序说课稿
- 4.7 逻辑代数应用举例说课稿-2025-2026学年中职基础课-职业模块 工科类-语文版-(数学)-51
- 第一节 传染病说课稿-2025-2026学年初中生物学北京版八年级下册-北京版
- 高级考评员职业技能鉴定考试题库(含答案)
- 抗艾滋病药物介绍
- 8《荷花淀》《小二黑结婚》《党费》群文阅读课件 2024-2025学年统编版高中语文选择性必修中册
- 编钟教学课件教学课件
- DL∕ T 1060-2007 750KV交流输电线路带电作业技术导则
- 电子元器件的焊接知识大全
- (2024年)羊水栓塞完整版pptx
- 非法侵入住宅谅解书范本
- (高清版)TDT 1071-2022 园地分等定级规程
- 救助管理机构护送服务规范
- 薪酬管理体系建设中的公务员薪酬和绩效奖金
评论
0/150
提交评论