




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
课 题:17.1.1勾股定理(1) 教材:(人教版)义务教育课程标准实验教科书 数学八年级(下)教 师叶树金年 级八年级授课时间2017.3.16科 目数学班 级八年级(1)班课 题17.1.1勾股定理(1)教学目标【知识技能】理解勾股定理的两种证明方法毕达哥拉斯证法和赵爽的弦图证法;应用勾股定理解决简单的直角三角形三边计算问题;【过程方法】通过对直角三角形三边关系的猜想验证,经历从特殊到一般的探索过程,发展合情推理,体会数形结合的思想; 【情感态度】在勾股定理的探索过程中感受数学文化的内涵,增进数学学习的信心.教学重点探究并理解勾股定理教学难点探索勾股定理的验证方法.教学方法启发式与探究式相结合.教学手段多媒体投影、计算机辅助教学,自制教具实验辅助.教学过程设计教师活动学生活动设计意图一 旧知新问,引出新课 提问:你们知道这个图形是由哪些图形组成的?你们知道为什么选这个图案作为2002年在北京召开的国际数学家大会的会徽?从而引出今天我们将共同探讨问题勾股定理二 猜想探索,形成方法在2500年前,古希腊著名的哲学家、数学家、天文学家毕达哥拉斯就已经对此问题有了明确的结论并给与了证明,相传他对三角形三边关系的发现竟然是从地砖中得到的,现在就让我们一同回到2500年前,体验一下毕达哥拉斯的经历:【活动1】:“地砖里的秘密?”地砖中隐含着直角三角形三边关系的什么“秘密”呢?预设问题:问题1:地砖是由全等的直角三角形拼接而成的,每个直角三角形都相邻三个正方形,这三个正方形面积间有怎样的关系?你是怎样看出来的?问题2:如果用直角三角形三边长来分别表示这三个正方形的面积,又将反映三边怎样的数量关系?问题3:等腰直角三角形满足上述关系,那么一般直角三角形呢?【发现】:【活动2】:“勾三,股四,弦几何?”图中每个小方格的边长均为1,请分别计算图中正方形A,B,C的面积,看看你能得出什么结论?【板书】猜想:直角三角形的两条直角边的平方和等于斜边的平方.【活动3】我们一起来验证!已知:Rt求证:【分析】 可代表边长为的正方形的面积,那么就存在一个边长为的正方形,需要四条长为的线段,即四个与全等的直角三角形,用这样的四个三角形能拼成边长为的正方形吗?应用代数方法能否证明?试动手拼一拼,证一证.证法1:将四个全等的直角三角形围成如图所示的正方形.证法2:将四个全等的直角三角形围成如图所示的正方形.【历史介绍】预案1中的方法1是我国汉代的赵爽在注解周髀算经时给出的方法,人们称之为“赵爽弦图”,2002年北京召开的国际数学家大会就将“赵爽弦图”定为会标; 预案2中的方法是我国古代的刘徽在他的九章算术中应用面积“出入相补”的原理给出的“青朱出入图”法. 公元1世纪中国一部天文学著作周髀算经中记载的商高和周公的对话:周公问商高“我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地的数据呢?”商高回答说:“数的产生来源于对方和圆这些形体的认识.其中有一条原理:当直角三角形矩得到的一条直角边勾等于3,另一条直角边股等于4的时候,那么它的斜边弦就必定是5.”【阶段小结】 以上的两种方法都不约而同地通过割补拼接的方法把直角三角形三边关系问题转化为正方形面积问题得以解决的。其中的依据是图形经过割补拼接后,只要没有重叠,没有空隙,面积不会改变.这种原理在以后的数学学习中也会应用到.三 归纳总结,描述定理【文字语言】直角三角形两条直角边的平方和等于斜边的平方 【符号语言】 Rt 【图形语言】四 巩固练习,适当拓展自我检测:五、课堂小结,布置作业小结提示:(1)勾股定理的使用条件是什么? (2)直角三角形三边有什么样的数量关系?(3)勾股定理的探索和应用过程中你用到了哪些数学方法?领悟到了什么样的数学思想?作业布置:1、 课堂作业课本第28页第1、7题2、查阅有关勾股定理的历史资料及证明方法,与同学交流。【活动1】在三个问题的引领下,学生逐渐发现三个正方形面积间的关系,转化为等腰直角三角形的三边关系,进而提出一般直角三角形三边关系的猜想.【活动2】学生小组合作,在网格纸上画图探究正方形R的面积,小组代 【活动3】学生动手操作,在感受图形变化的同时,用“数”描述图形的面积,进而数形结合地得出直角三角形的三边关系.小组代表在黑板上用模具展示拼图结果,师生共同应用代数法转化等式,证明猜想.学生归纳总结直角三角形三边关系,结合图形语言,从文字语言和符号语言两方面描述勾股定理.学生分析已知条件,确定直角位置及已知边的位置,尝试应用勾股定理在直角三角形已知两边时求第三边.学生独立完成自我检测题,并交流解题方法.学生在三个问题的引领下回顾并归纳本节课的知识技能、思想方法、情感体验.学生课后完成作业,其中的提高选作题可预留一周时间完成.激发学生探索勾股定理的兴趣.通过【活动1】对地砖中图形的探索培养学生能够用数学的眼光认识生活中现象的能力;将面积关系转化为等腰直角三角形三边长之间的数量关系,让学生体验“面积法”在几何证明中的作用,为探索一般直角三角形三边关系提供了方法线索【活动2】对“勾三, 股四,弦五”这种较一般的直角三角形的三边关系进行探究,让学生进一步体验毕达哥拉斯的面积法,也再次为猜想提供有力证据;不仅如此,正方形R面积的计算方法已经体现“割”和“补”的思想,这为下一步应用面积证法进行一般化证明做好铺垫【活动3】通过使用直角三角形模具完成拼图过程,让学生体会应用图形“割补拼接”面积不变的特点来验证直角三角形三边数量关系的猜想,培养学生由数到形再由形到数的数学思想以及转化的能力在实验拼图探究的过程中发展学生的空间想象力和合情推理能力.教师把握时机向学生讲述勾股定理的探索历史,使学生感受数学证明的灵活与精巧,体会勾股定理中蕴含的历史和文化,学生在发现自己的方法与古代数学家的想法不期而遇时,自豪感和自信心油然而生通过以上三个活动,学生经历了实际抽象、猜想探索、一般验证的探究过程,实现了从特殊到一般的思维跨越让学生从文字语言、符号语言、图形语言三个方面对勾股定理进行描述,培养学生数学语言的表达能力本例是勾股定理在实际生活中的应用,通过条件的变化体会在直角三角形中已知两边可求第三边基础题是对勾股定理的简单应用,帮助学生巩固基础.提高题是对“赵爽弦图”以及毕达哥拉斯面积方法的应用.通过以上问题的练习,学生对勾股定理证明方法的应用以及定理本身的应用都有了较深刻的认识,从而实现了从理解知识到初步运用知识的提升为了有效地对学生的学习情况进行反馈,尊重学生的个体差异,满足学生多样化的学习需要,我对作业设计进行分层布置,分为基础必做题和提高选作题.教学设计说明本节课的设计结合教材的特点及学生知识特征,力求体现以下几个方面:一、科学性。首先,主要教学环节的设计严格遵循知识发生、发展的一般规律;其次,注重探究问题的本质;第三,注重让学生掌握科学的学习方法。二、趣味性。通过介绍勾股定理的有关历史,激发学生学习的兴趣;另外,力求实现信息技术与数学课的整
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版清工公共场所卫生保洁合同
- 二零二五年度网络安全防护设备采购合同协议书
- 二零二五年度环保型车库销售合同范本
- 2025版情感破裂双方协议离婚合同样本
- 2025版钢结构工程云计算与物联网技术应用合同
- 2025版建筑结构健康监测技术咨询合同
- 二零二五版跨境电商进口合同
- 二零二五年跑步俱乐部年度活动策划协议范本
- 2025防火卷帘门防火安全性能评估与合同样本
- 二零二五年度水利项目承包合同样本
- 心力衰竭患者的查房与护理
- 2025年度鸡蛋产品品牌授权及区域代理合作协议
- 水稻全程机械化栽培技术
- 2025年患者转运与护理知识试题附答案
- 浙江省2025年中考语文真题试卷及答案
- 营销策划 -洋酒品牌轩尼持深圳快闪店小红书营销方案
- ORT测试管理办法
- 卒中护理人文关怀
- 污水厂人员考核方案
- BIM建模(活页式) 课件 61.项目桥梁轴网创建 -70.视觉样式
- 年画宝宝活动方案
评论
0/150
提交评论