




已阅读5页,还剩14页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第1讲空间几何体、三视图、表面积与体积全国卷3年考情分析年份全国卷全国卷全国卷2019点到平面的距离T16多面体的棱长与面的个数T16多面体的体积T162018圆柱的表面积计算T5圆锥的体积计算T16三视图与数学文化T3空间几何体的三视图、直观图及最短路径问题T9与外接球有关的空间几何体体积的最值问题T122017空间几何体的三视图及组合体体积的计算T6球的内接圆柱、圆柱体积的计算T9长方体的性质及其外接球的表面积的计算T15(1)“立体几何”在高考中一般会以“两小一大”或“一小一大”的命题形式出现,这“两小”或“一小”主要考查三视图,几何体的表面积与体积,空间点、线、面位置关系(特别是平行与垂直).(2)考查一个小题时,本小题一般会出现在第67题的位置上,难度一般;考查两个小题时,其中一个小题难度一般,另一小题难度较高,一般会出现在第11、12、16题的位置上,本小题虽然难度较高,主要体现在计算量上,但仍是对基础知识、基本公式的考查.空间几何体的三视图例1(2018全国卷)某圆柱的高为2,底面周长为16,其三视图如图所示.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.2B.2C.3D.2解析先画出圆柱的直观图,根据题图的三视图可知点M,N的位置如图所示.圆柱的侧面展开图及M,N的位置(N为OP的四等分点)如图所示,连接MN,则图中MN即为M到N的最短路径.ON164,OM2,MN2.答案B解题方略与三视图有关的问题主要包括两个方面一是定形,即确定三视图对应几何体的结构特征,熟练掌握规则几何体的三视图是由三视图还原几何体的基础,按以下步骤可轻松解决.应该注意的是,三视图中的虚线表示几何体中看不到的线.二是建立三视图中的数据与几何体的几何度量之间的关系.其中,三视图的画法是解决该问题的重要依据,其画法的基本要求与规则如下.基本要求:长对正,高平齐,宽相等.画法规则:正侧一样高,正俯一样长,侧俯一样宽.跟踪训练1.如图是一个空间几何体的正视图和俯视图,则它的侧视图为()解析:选A由正视图和俯视图可知,该几何体是由一个圆柱挖去一个圆锥构成的,结合正视图的宽及俯视图的直径可知侧视图应为A.故选A.2.(2019江西八所重点中学联考)某四面体的三视图如图所示,则该四面体最长的棱长与最短的棱长的比值是()A.B.C.D.解析:选D在棱长为2的正方体中还原该四面体PABC如图所示,其中最短的棱为AB和BC,最长的棱为PC.因为正方体的棱长为2,所以ABBC2,PC3,所以该四面体最长的棱长与最短的棱长的比值为.故选D.几何体的表面积与体积例2(1)(2019唐山市摸底考试)已知某几何体的三视图如图所示(俯视图中曲线为四分之一圆弧),则该几何体的表面积为()A.1B.3C.2D.4(2)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A.90B.63C.42D.36(3)(2019全国卷)学生到工厂劳动实践,利用3D打印技术制作模型.如图,该模型为长方体ABCDA1B1C1D1挖去四棱锥OEFGH后所得的几何体,其中O为长方体的中心,E,F,G,H分别为所在棱的中点,ABBC6cm,AA14cm.3D打印所用原料密度为0.9g/cm3.不考虑打印损耗,制作该模型所需原料的质量为_g.解析(1)由题设知,该几何体是棱长为1的正方体被截去底面半径为1的圆柱后得到的,如图所示,所以表面积S22(11)2114.故选D.(2)法一:(分割法)由题意知,该几何体是一个组合体,下半部分是一个底面半径为3,高为4的圆柱,其体积V132436;上半部分是一个底面半径为3,高为6的圆柱的一半,其体积V232627.所以该组合体的体积VV1V2362763.法二:(补形法)由题意知,该几何体是一圆柱被一平面截去一部分后所得的几何体,在该几何体上方再补上一个与其相同的几何体,让截面重合,则所得几何体为一个圆柱,该圆柱的底面半径为3,高为10414,该圆柱的体积V13214126.故该几何体的体积为圆柱体积的一半,即VV163.(3)由题知挖去的四棱锥的底面是一个菱形,对角线长分别为6cm和4cm,故V挖去的四棱锥46312(cm3).又V长方体664144(cm3),所以模型的体积为V长方体V挖去的四棱锥14412132(cm3),所以制作该模型所需原料的质量为1320.9118.8(g).答案(1)D(2)B(3)118.8解题方略1.求几何体的表面积的方法(1)求表面积问题的思路是将立体几何问题转化为平面图形问题,即空间图形平面化,这是解决立体几何的主要出发点.(2)求不规则几何体的表面积时,通常将所给几何体分割成柱、锥、台体,先求这些柱、锥、台体的表面积,再通过求和或作差求得所给几何体的表面积.2.求空间几何体体积的常用方法公式法直接根据常见柱、锥、台等规则几何体的体积公式计算等积法根据体积计算公式,通过转换空间几何体的底面和高使得体积计算更容易,或是求出一些体积比等割补法把不能直接计算体积的空间几何体进行适当的分割或补形,转化为可计算体积的几何体跟踪训练1.(2018全国卷)已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为()A.12B.12C.8D.10解析:选B设圆柱的轴截面的边长为x,则x28,得x2,S圆柱表2S底S侧2()22212.故选B.2.如图,在正三棱柱ABCA1B1C1中,已知ABAA13,点P在棱CC1上,则三棱锥PABA1的体积为_.解析:由题意,得V三棱锥PABA1V三棱锥CABA1V三棱锥A1ABCSABCAA1323.答案:3.(2019天津高考)已知四棱锥的底面是边长为的正方形,侧棱长均为.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为_.解析:如图所示,在四棱锥VABCD中,O为正方形ABCD的中心,也是圆柱下底面的中心,由四棱锥底面边长为,可得OC1.设M为VC的中点,过点M作MO1OC交OV于点O1,则O1即为圆柱上底面的中心.O1MOC,O1OVO.VO2,O1O1.可得V圆柱O1M2O1O1.答案:多面体与球的切、接问题经典母题例3在三棱锥PABC中,ABC为等边三角形,PAPBPC3,PAPB,三棱锥PABC的外接球的体积为()A.B.C.27D.27解析在三棱锥PABC中,ABC为等边三角形,PAPBPC3,PABPBCPAC.PAPB,PAPC,PCPB.以PA,PB,PC为过同一顶点的三条棱作正方体(如图所示),则正方体的外接球同时也是三棱锥PABC的外接球.正方体的体对角线长为3,其外接球半径R.因此三棱锥PABC的外接球的体积V.答案B母题变式1.在本例条件下,求三棱锥PABC的内切球的半径为_.解析:由本例解析知,SPABSPBCSPAC,SABC33sin 60.设三棱锥PABC的内切球的半径为r,则VPABCAPSPBC(SPACSPBASPBCSABC)r,3r,解得r,所求三棱锥内切球的半径为.答案:2.若本例变为:已知A,B,C,D是球O上不共面的四点,且ABBCAD1,BDAC,BCAD,则球O的体积为_.解析:因为ABBC1,AC,所以AB2BC2AC2,所以BCAB,又BCAD,ADABA,所以BC平面ABD.因为ABAD1,BD,所以AB2AD2BD2,所以ABAD,此时可将点A,B,C,D看成棱长为1的正方体上的四个顶点,球O为正方体的外接球,设球O的半径为R,故2R,所以R,则球O的体积VR3.答案:解题方略1.空间几何体与球接、切问题的求解方法(1)确定球心的位置,弄清球的半径(直径)与几何体的位置和数量关系.(2)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(3)补成正方体、长方体、正四面体、正棱柱、圆柱等规则几何体.2.与球有关的组合体的常用结论(1)长方体的外接球球心:体对角线的交点;半径:r(a,b,c为长方体的长、宽、高).(2)正方体的外接球、内切球外接球:球心是正方体中心,半径ra(a为正方体的棱长);内切球:球心是正方体中心,半径r(a为正方体的棱长).跟踪训练1.我国古代数学名著九章算术中,将底面是直角三角形的直三棱柱(侧棱垂直于底面的三棱柱)称为“堑堵”.现有一块底面两直角边长分别为3和4、侧棱长为12的“堑堵”形石材,将之切削、打磨,加工成若干个相同的石球,并让石球的体积最大,则剩余的石料体积为()A.7216B.7212C.728D.726解析:选C当每个石球与各侧面相切时,符合题意,此时设每个石球的半径为r.由半径为r的圆与两直角边长分别为3和4的直角三角形内切,结合等面积法可得(345)r34,解得r1.由题意易知,可以得到6个这样的石球.6个半径为1的石球的体积为6138,则剩余的石料体积为34128728.故选C.2.(2018全国卷)设A,B,C,D是同一个半径为4的球的球面上四点,ABC为等边三角形且其面积为9,则三棱锥DABC体积的最大值为()A.12B.18C.24D.54解析:选B由等边ABC的面积为9,可得AB29,所以AB6,所以等边ABC的外接圆的半径为rAB2.设球的半径为R,球心到等边ABC的外接圆圆心的距离为d,则d2.所以三棱锥DABC高的最大值为246,所以三棱锥DABC体积的最大值为9618.故选B.3.(2017江苏高考)如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下底面及母线均相切.记圆柱O1O2的体积为V1,球O的体积为V2,则的值是_.解析:设球O的半径为R,因为球O与圆柱O1O2的上、下底面及母线均相切,所以圆柱的底面半径为R、高为2R,所以.答案:4.(2019福建五校第二次联考)已知直三棱柱ABCA1B1C1的6个顶点都在球O的球面上,若AB3,AC4,ABAC,AA112,则球O的直径为_.解析:如图,设BC的中点为D,B1C1的中点为D1,连接DD1,取其中点O,连接AD,A1D1,则DADBDC,D1A1D1B1D1C1,且DD1垂直于直三棱柱的上、下底面,所以点O到直三棱柱的各个顶点的距离相等,即点O为直三棱柱的外接球的球心O,连接OB,则球O的直径为2BO2213.答案:13直观想象三视图中相关问题的求解典例已知某几何体的三视图如图所示,则该几何体的体积等于()A.24B.42C.4D.8解析由三视图可知,该几何体的直观图为左侧半球、中间正方体、右侧圆锥的组合体.其中,半球的半径r1与圆锥的底面半径r2相等,皆为1,即r1r21,正方体的棱长a2,圆锥的高h2.所以半球的体积V1r13,正方体的体积V2a3238,圆锥的体积V3rh122.所以该组合体的体积VV1V2V388.故选D.答案D素养通路本题以组合体的三视图为背景,主要是根据几何体的三视图及三视图中的数据,求几何体的体积或侧(表)面积.此类问题难点:一是根据三视图的形状特征确定几何体的结构特征;二是将三视图中的数据转化为几何体的几何度量.考查了直观想象这一核心素养.专题过关检测A组“124”满分练一、选择题1.(2019福州市第一学期抽测)如图,为一圆柱切削后的几何体及其正视图,则相应的侧视图可以是()解析:选B由题意,根据切削后的几何体及其正视图,可得相应的侧视图的切口为椭圆,故选B.2.如图,在正方体ABCDA1B1C1D1中,P为BD1的中点,则PAC在该正方体各个面上的正投影可能是()A.B.C.D.解析:选B连接A1C1,则点P在上、下底面的正投影落在A1C1或AC上,所以PAC在上底面或下底面的正投影为,在前面、后面、左面、右面的正投影为.故选B.3.(2019武汉市调研测试)如图,在棱长为1的正方体ABCDA1B1C1D1中,M为CD的中点,则三棱锥ABC1M的体积VABC1M()A.B.C.D.解析:选CVABC1MVC1ABMSABMC1CABADC1C.故选C.4.设一个球形西瓜,切下一刀后所得切面圆的半径为4,球心到切面圆心的距离为3,则该西瓜的体积为()A.100B.C.D.解析:选D因为切面圆的半径r4,球心到切面的距离d3,所以球的半径R5,故球的体积VR353,即该西瓜的体积为.故选D.5.(2019届高三开封高三定位考试)某几何体的三视图如图所示,其中俯视图为扇形,则该几何体的体积为()A.4B.2C.D.解析:选B由题意知该几何体的直观图如图所示,该几何体为圆柱的一部分,设底面扇形的圆心角为,由tan,得,故底面面积为22,则该几何体的体积为32.故选B.6.某圆锥的侧面展开图是面积为3且圆心角为的扇形,此圆锥的体积为()A.B.C.2D.2解析:选B设圆锥的母线为R,底面圆的半径为r,扇形的圆心角为,则SR2R23,解得R3,底面圆的半径r满足,解得r1,所以这个圆锥的高h2,故圆锥的体积Vr2h.故选B.7.已知矩形ABCD,AB2BC,把这个矩形分别以AB,BC所在直线为轴旋转一周,所成几何体的侧面积分别记为S1,S2,则S1与S2的比值等于()A.B.1C.2D.4解析:选B设BCa,AB2a,所以S12a2a4a2,S222aa4a2,S1S21.故选B.8.(2019广东省七校联考)某几何体的三视图如图所示,则该几何体的表面积和体积分别是()A.246和40B.246和72C.646和40D.646和72解析:选C把三视图还原成几何体,如图所示.由题意知S四边形ABCD12,S8,S6,S(26)416,S(26)312.易得B1A1SA1,B1C1SC1,且SA14,SC15,所以S346,S4510,所以该几何体的表面积为12861612610646.在棱SD上取一点D1,使得DD12,连接A1D1,C1D1,则该几何体的体积VVV12412240.故选C.9.(2019蓉城名校第一次联考)已知一个几何体的正视图和侧视图如图1所示,其俯视图用斜二测画法所画出的水平放置的直观图是一个直角边长为1的等腰直角三角形(如图2所示),则此几何体的体积为()A.1B.C.2D.2解析:选B根据直观图可得该几何体的俯视图是一个直角边长分别是2和的直角三角形(如图所示),根据三视图可知该几何体是一个三棱锥,且三棱锥的高为3,所以体积V3.故选B.10.九章算术是我国古代内容极为丰富的数学名著,书中提到了一种名为“刍甍”的五面体,如图所示,四边形ABCD为矩形,棱EFAB.若此几何体中,AB4,EF2,ADE和BCF都是边长为2的等边三角形,则该几何体的表面积为()A.8B.88C.62D.862解析:选B如图所示,取BC的中点P,连接PF,则PFBC,过F作FQAB,垂足为Q.因为ADE和BCF都是边长为2的等边三角形,且EFAB,所以四边形ABFE为等腰梯形,FP,则BQ(ABEF)1,FQ,所以S梯形EFBAS梯形EFCD(24)3,又SADESBCF2,S矩形ABCD428,所以该几何体的表面积S322888.故选B.11.古人采取“用臼舂米”的方法脱去稻谷的外壳,获得可供食用的大米,用于舂米的“臼”多用石头或木头制成.一个“臼”的三视图如图所示,则凿去部分(看成一个简单的组合体)的体积为()A.63B.72C.79D.99解析:选A由三视图得凿去部分是圆柱与半球的组合体,其中圆柱的高为5,底面圆的半径为3,半球的半径为3,所以组合体的体积为3253363.故选A.12.已知三棱锥PABC的四个顶点都在球O的表面上,PA平面ABC,ABBC,且PA8.若平面ABC截球O所得截面的面积为9,则球O的表面积为()A.10B.25C.50D.100解析:选D设球O的半径为R,由平面ABC截球O所得截面的面积为9,得ABC的外接圆的半径为3.设该外接圆的圆心为D,因为ABBC,所以点D为AC的中点,所以DC3.因为PA平面ABC,易证PBBC,所以PC为球O的直径.又PA8,所以ODPA4,所以ROC5,所以球O的表面积为S4R2100.故选D.二、填空题13.(2019长春市质量监测一)已知一所有棱长都是的三棱锥,则该三棱锥的体积为_.解析:记所有棱长都是的三棱锥为PABC,如图所示,取BC的中点D,连接AD,PD,作POAD于点O,则PO平面ABC,且OP,故三棱锥PABC的体积VSABCOP()2.答案:14.如图,在正三棱柱ABCA1B1C1中,D为棱AA1的中点.若AA14,AB2,则四棱锥BACC1D的体积为_.解析:取AC的中点O,连接BO(图略),则BOAC,所以BO平面ACC1D.因为AB2,所以BO.因为D为棱AA1的中点,AA14,所以AD2,所以S梯形ACC1D(24)26,所以四棱锥BACC1D的体积为62.答案:215.如图,半径为4的球O中有一内接圆柱,则圆柱的侧面积最大值是_.解析:设圆柱的上底面半径为r,球的半径与上底面夹角为,则r4cos,圆柱的高为8sin.所以圆柱的侧面积为32sin2.当且仅当时,sin21,圆柱的侧面积最大,所以圆柱的侧面积的最大值为32.答案:3216.(2019江西省五校协作体试题)某几何体的三视图如图所示,正视图是一个上底为2,下底为4的直角梯形,俯视图是一个边长为4的等边三角形,则该几何体的体积为_.解析:把三视图还原成几何体ABCDEF,如图所示,在AD上取点G,使得AG2,连接GE,GF,则把几何体ABCDEF分割成三棱柱ABCGEF和三棱锥DGEF,所以VABCDEFVABCGEFVDGEF4242.答案:B组“53”提速练1.(2019福州市质量检测)棱长为1的正方体ABCDA1B1C1D1木块的直观图如图所示,平面过点D且平行于平面ACD1,则该木块在平面内的正投影面积是()A.B.C.D.1解析:选A棱长为1的正方体ABCDA1B1C1D1木块在平面内的正投影是三个全等的菱形,如图,正投影可以看成两个边长为的等边三角形,所以木块在平面内的正投影面积是2.故选A.2.在棱长为3的正方体ABCDA1B1C1D1中,P在线段BD1上,且,M为线段B1C1上的动点,则三棱锥MPBC的体积为()A.1B.C.D.与M点的位置有关解析:选B,点P到平面BCC1B1的距离是D1到平面BCC1B1距离的,即为1.M为线段B1C1上的点,SMBC33,VMPBCVPMBC1.故选B.3.(2019重庆市学业质量调研)三棱锥SABC中,SA,SB,SC两两垂直,已知SAa,SBb,SC2,且2ab,则此三棱锥的外接球的表面积的最小值为()A.B.C.4D.6解析:选A由题意,设三棱锥的外接球的半径为R,因为SA,SB,SC两两垂直,所以以SA,SB,SC为棱构造长方体,其体对角线即三棱锥的外接球的直径,因为SAa,SBb,SC2,所以4R2a2b24a245(a1)2,所以a1时,(4R2)min,所以三棱锥的外接球的表面积的最小值为.故选A.4.(2019洛阳尖子生第二次联考)已知正三角形ABC的三个项点都在半径为2的球面上,球心O到平面ABC的距离为1,点E是线段AB的中点,过点E作球O的截面,则截面圆面积的最小值是()A.B.2C.D.3解析:选C设正三角形ABC的中心为O1,连接OO1,OA,O1A,由题意得O1O平面ABC,O1O1,OA2,在RtO1OA中,O1A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年区块链技术行业的应用前景与发展趋势研究报告
- 2025年综合性文化中心行业研究报告及未来发展趋势预测
- 2025年健康科技行业健康科技产品研发趋势及市场需求分析报告
- 2025年人才服务行业市场趋势与发展机遇研究报告
- 2025年邮轮旅游行业文化旅游与邮轮旅游市场研究报告
- 2025年航空航天行业航空电子设备市场前景研究报告
- 城市轨道交通安全文化建设方案
- 高校课程教学方案设计与实施
- 电商部门年度销售目标与推广计划
- 化学配合物教学设计与课程资源
- 颈椎骨折课件导图
- 2025至2030中国工业云平台行业发展研究与产业战略规划分析评估报告
- 2025餐饮合伙经营合同协议书
- 2025年山东西学中题库及答案
- 14.2物质的比热容同步练习(含答案) 沪科版物理九年级全一册
- 《国家机构有哪些》课件
- 肉制品安全培训会课件
- 五年级数学口算训练题库及解题技巧
- 江苏省泰州市兴化市昭阳湖初级中学2023-2024学年七年级上学期语文第一次质量抽测试卷(含答案)
- 2024夏季中国东方航空股份有限公司社会招聘笔试模拟试题含答案详解(能力提升)
- 冬季矿山安全生产培训课件
评论
0/150
提交评论