高一数学函数与方程知识点总结.doc_第1页
高一数学函数与方程知识点总结.doc_第2页
高一数学函数与方程知识点总结.doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高一数学函数与方程知识点总结 一、函数的概念与表示 1、映射 (1)映射:设A、B是两个集合,如果按照某种映射法则f,对于集合A中的任一个元素,在集合B中都有唯一的元素和它对应,则这样的对应(包括集合A、B以及A到B的对应法则f)叫做集合A到集合B的映射,记作f:AB。 注意点:(1)对映射定义的理解。(2)判断一个对应是映射的方法。一对多不是映射,多对一是映射 2、函数 构成函数概念的三要素定义域对应法则值域 两个函数是同一个函数的条件:三要素有两个相同 二、函数的解析式与定义域 1、求函数定义域的主要依据: (1)分式的分母不为零; (2)偶次方根的被开方数不小于零,零取零次方没有意义; (3)对数函数的真数必须大于零; (4)指数函数和对数函数的底数必须大于零且不等于1; 三、函数的值域 1求函数值域的方法 直接法:从自变量x的范围出发,推出y=f(x)的取值范围,适合于简单的复合函数; 换元法:利用换元法将函数转化为二次函数求值域,适合根式内外皆为一次式; 判别式法:运用方程思想,依据二次方程有根,求出y的取值范围;适合分母为二次且R的分式; 分离常数:适合分子分母皆为一次式(x有范围限制时要画图); 单调性法:利用函数的单调性求值域; 图象法:二次函数必画草图求其值域; 利用对号函数 几何意义法:由数形结合,转化距离等求值域。主要是含绝对值函数 四.函数的奇偶性 1.定义: 设y=f(x),xA,如果对于任意A,都有,则称y=f(x)为偶函数。 如果对于任意A,都有,则称y=f(x)为奇 函数。 2.性质: y=f(x)是偶函数y=f(x)的图象关于轴对称,y=f(x)是奇函数y=f(x)的图象关于原点对称, 若函数f(x)的定义域关于原点对称,则f(0)=0 奇奇=奇偶偶=偶奇奇=偶偶偶=偶奇偶=奇两函数的定义域D1,D2,D1D2要关于原点对称 3.奇偶性的判断 看定义域是否关于原点对称看f(x)与f(-x)的关系 五、函数的单调性 1、函数单调性的定义: 2设是定义在M上的函数,若f(x)与g(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论