模式识别与机器学习_作业_中科院_国科大_来源网络 (3).docx_第1页
模式识别与机器学习_作业_中科院_国科大_来源网络 (3).docx_第2页
模式识别与机器学习_作业_中科院_国科大_来源网络 (3).docx_第3页
模式识别与机器学习_作业_中科院_国科大_来源网络 (3).docx_第4页
模式识别与机器学习_作业_中科院_国科大_来源网络 (3).docx_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第三次作业一:设以下模式类别具有正态概率密度函数: 1:(0 0)T, (2 0)T, (2 2)T, (0 2)T 2:(4 4)T, (6 4)T, (6 6)T, (4 6)T(1)设P(1)= P(2)=1/2,求这两类模式之间的贝叶斯判别界面的方程式。(2)绘出判别界面。答案:(1)模式的均值向量mi和协方差矩阵Ci可用下式估计:其中N其中Ni为类别i中模式的数目,x中模式的数目,xij代表在第i个类别中的第j个模式。由上式可求出:,设因P(1)=P(2)=1/2,因C1=C2,则判别界面为:(2)作业二:编写两类正态分布模式的贝叶斯分类程序。程序代码:#includeusingnamespacestd;voidinverse_matrix(intT,double b55)double a55;for(int i=0;iT;i+) for(int j=0;j(2*T);j+) if (jT) aij=bij; elseif (j=T+i) aij=1.0; elseaij=0.0; for(int i=0;iT;i+) for(int k=0;kT;k+) if(k!=i) double t=aki/aii; for(int j=0;j(2*T);j+) double x=aij*t; akj=akj-x; for(int i=0;iT;i+) double t=aii; for(int j=0;j(2*T);j+) aij=aij/t; for(int i=0;iT;i+) for(int j=0;jT;j+) bij=aij+T; voidget_matrix(intT,double result55,double a5)for(int i=0;iT;i+)for(int j=0;jT;j+)resultij=ai*aj;voidmatrix_min(intT,double a55,int bb)for(int i=0;iT;i+)for(int j=0;jT;j+)aij=aij/bb;voidgetX(intT,double res5,double a5,double C55)for(int i=0;iT;i+)double sum=0.0;for(int j=0;jTw1_numw2_num;for(int i=0;iw1_num;i+)for(int j=0;jw1ij;m1j+=w1ij;for(int i=0;iw2_num;i+)for(int j=0;jw2ij;m2j+=w2ij;for(int i=0;iw1_num;i+)m1i=m1i/w1_num;for(int i=0;iw2_num;i+)m2i=m2i/w2_num;for(int i=0;iw1_num;i+)double res55,a5;for(int j=0;jT;j+)aj=w1ij-m1j;get_matrix(T,res,a);for(int j=0;jT;j+)for(int k=0;kT;k+)C1jk+=resjk;matrix_min(T,C1,w1_num);for(int i=0;iw2_num;i+)double res55,a5;for(int j=0;jT;j+)aj=w2ij-m2j;get_matrix(T,res,a);for(int j=0;jT;j+)for(int k=0;kT;k+)C2jk+=resjk;matrix_min(T,C2,w2_num);inverse_matrix(T,C1);inverse_matrix(T,C2);double XX5=0,C_C15=0,C_C25=0;double m1_m25;for(int i=0;iT;i+)m1_m2i=m1i-m2i;getX(T,XX,m1_m2,C1);getX(T,C_C1,m1,C1);getX(T,C_C2,m2,C1);doubleresultC=0.0;for(int i=0;iT;i+)resultC-=C_C1i*C_C1i;for(int i=0;iT;i+)resultC+=C_C2i*C_C2i;resultC=resultC/2;cout判别函数为:endl;coutd1(x)-d2(x)=;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论