




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高考数学压轴题精选1.已知函数的图像过点,且对任意实数都成立,函数与的图像关于原点对称。 ()求与的解析式;()若在-1,1上是增函数,求实数的取值范围;2.设数列满足 ,且数列是等差数列,数列是等比数列。(I)求数列和的通项公式;(II)是否存在,使,若存在,求出,若不存在,说明理由。3. 数列的首项,前n项和Sn与an之间满足 (1)求证:数列的通项公式; (2)设存在正数k,使对一切都成立,求k的最大值. 4.已知F1、F2分别是椭圆的左、右焦点,其左准线与x轴相交于点N,并且满足,设A、B是上半椭圆上满足的两点,其中 (1)求此椭圆的方程及直线AB的斜率的取值范围; (2)设A、B两点分别作此椭圆的切线,两切线相交于一点P,求证:点P在一条定直线上,并求点P的纵坐标的取值范围.5.已知函数 (1)求函数f(x)是单调区间; (2)如果关于x的方程有实数根,求实数的取值集合; (3)是否存在正数k,使得关于x的方程有两个不相等的实数根?如果存在,求k满足的条件;如果不存在,说明理由.6、已知抛物线的焦点为,直线过点且与抛物线交于两点.并设以弦为直径的圆恒过原点.()求焦点坐标;()若,试求动点的轨迹方程.7、已知椭圆上的点到右焦点F的最小距离是,到上顶点的距离为,点是线段上的一个动点.(I)求椭圆的方程;()是否存在过点且与轴不垂直的直线与椭圆交于、两点,使得,并说明理由.8、椭圆的对称中心在坐标原点,一个顶点为,右焦点与点的距离为。 (1)求椭圆的方程; (2)是否存在斜率的直线:,使直线与椭圆相交于不同的两点满足,若存在,求直线的倾斜角;若不存在,说明理由。9、已知数列的前n项和为,且对一切正整数n都有。(1)证明:;(2)求数列的通项公式;(3)设,求证:对一切都成立。10、已知等差数列的前三项为记前项和为()设,求和的值;()设,求的值参考答案:1 解:由题意知:,设函数图象上的任意一点关于原点的对称点为P(x,y), 则,4分因为点 连续,恒成立9分即,.10分由上为减函数,.12分当时取最小值0,.13分故另解:,解得2(1)由已知, 公差 1分 2分 4分由已知5分所以公比,6分7分(2)设8分所以当时,是增函数。10分又,所以当时,12分又,13分所以不存在,使。14分3本小题考查等差数列通项与前n项和关系以及数列与不等式相结合的有关问题。解法:(1)证明: (1分), (3分), (5分)数列为首项,以2为公差的等差数列。(6分)(2)由(1)知, (7分)设,则 (10分)上递增,要使恒成立,只需, (12分)4本小题考查椭圆简单几何性质、直线与椭圆的位置关系及向量知识的应用, 解:(1)由于,解得,从而所求椭圆的方程为(3分) 三点共线,而点N的坐标为(2,0).设直线AB的方程为,其中k为直线AB的斜率,依条件知k0.由消去x得,即根据条件可知 解得(5分)设,则根据韦达定理,得又由 从而 消去令,则由于 上的减函数,从而,即, ,而因此直线AB的斜率的取值范围是(7分)(2)上半椭圆的方程为,求导可得 所以两条切线的斜率分别为(8分)解法一:切线PA的方程是.又,从而切线PA的方程为,同理可得切线PB的方程为 由 可解得点P的坐标 再由 (11分)又由(1)知 ,因此点P在定直线上,并且点P的纵坐标的取值范围是1, (12分)解法二:设点P的从标为,则可得切线PA的方程是而点在此切线上,所以有,即 (9分)所以有 , 同理可得 根据和可知直线AB的方程为而直线AB过定点N(2,0),直线AB的方程为 (11分0又由(1)知 ,所以有因此点P在定直线上,并且点P的纵坐标的取值范围是 (12分)5本小题考查利用导数研究函数的单调区间以及用导数的方法讨论方程根的情况。解:(1)函数的定义域是对求导得 (2分)由 ,由因此 是函数的增区间;(1,0)和(0,3)是函数的减区间 (5分)(2)解法一:因为所以实数m的取值范围就是函数的值域 (6分)对令当x=2时取得最大值,且又当x无限趋近于0时,无限趋近于无限趋近于0,进而有无限趋近于.因此函数的值域是 即实数m的取值范围是 (9分)解法二:方程有实数根等价于直线与曲线y=lnx有公共点,并且当直线与曲线y=lnx相切时,m取得最大值. (6分)设直线相切,切点为求导得,解得 所以m的最大值是。而且易知当与曲线y=lnx总有公共点。因此实数m的取值集合是 (9分)(3)结论:这样的正数k不存在。 (10分)下面采用反证法来证明:假设存在正数k,使得关于x的方程有两个不相等的实数根,则 (11分)根据对数函数定义域知都是正数。又由(1)可知,当 =再由k0,可得由于 不妨设 ,由和可得 利用比例性质得 即 (13分)由于上的恒正增函数,且 又由于 上的恒正减函数,且 ,这与(*)式矛盾。因此满足条件的正数k不存在 (14分)85本小题考查利用导数研究函数的单调区间以及用导数的方法讨论方程根的情况。解:(1)函数的定义域是对求导得 (2分)由 ,由因此 是函数的增区间;(1,0)和(0,3)是函数的减区间 (5分)(2)解法一:因为所以实数m的取值范围就是函数的值域 (6分)对令当x=2时取得最大值,且又当x无限趋近于0时,无限趋近于无限趋近于0,进而有无限趋近于.因此函数的值域是 即实数m的取值范围是 (9分)解法二:方程有实数根等价于直线与曲线y=lnx有公共点,并且当直线与曲线y=lnx相切时,m取得最大值. (6分)设直线相切,切点为求导得,解得 所以m的最大值是。而且易知当与曲线y=lnx总有公共点。因此实数m的取值集合是 (9分)(3)结论:这样的正数k不存在。 (10分)下面采用反证法来证明:假设存在正数k,使得关于x的方程有两个不相等的实数根,则 (11分)根据对数函数定义域知都是正数。又由(1)可知,当 =再由k0,可得由于 不妨设 ,由和可得 利用比例性质得 即 (13分)由于上的恒正增函数,且 又由于 上的恒正减函数,且 ,这与(*)式矛盾。因此满足条件的正数k不存在 (14分)6、 ()设直线方程为,代入得设,则有而,故即,得,焦点.()设,由得所以而,可得又的中点坐标为,当时,利用有整理得,.当时,的坐标为,也满足.所以即为动点的轨迹方程.7、解析:(1)由题意可知且,解得,椭圆的方程为;(2)由(1)得,所以.假设存在满足题意的直线,设的方程为,代入,得,设,则 ,而的方向向量为,; 当时,即存在这样的直线;当时,不存在,即不存在这样的直线8、解:(1)依题意,设椭圆方程为,则其右焦点坐标为, 1分由,得,即,解得。 3分 又 , ,即椭圆方程为。 4分(2)由知点在线段的垂直平分线上,由消去得即 (*) 6分由,得方程(*)的,即方程(*)有两个不相等的实数根。7分设、,线段的中点,则,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 民宅建筑方案设计规范
- 关于素质活动的方案策划
- 环境清洁活动策划方案模板
- 五四环保活动策划方案
- 都江堰建筑方案设计
- 配电柜改造施工方案
- 2025年中级会计职称考试模拟试卷 解析版 考试技巧
- 基于数据分析的市场营销策略
- 2025工会考试题库及答案
- 2025河北邯郸武安市选聘农村党务(村务)工作者180人笔试备考试题及参考答案详解一套
- 生产作业管理讲义
- 诗和词的区别课件
- 胸外科围手术期呼吸功能锻炼的意义培训课件
- (新版)海南自由贸易港建设总体方案考试题库(含答案)
- 战现场急救技术教案
- 人教版新教材高中英语选择性必修一全册课文及翻译(中英word)
- 内蒙古电网介绍
- 气力输送计算
- 新北师大版七年级上册数学全册课件
- 公共关系学授课教案
- 河北省城市集中式饮用水水源保护区划分
评论
0/150
提交评论