第7章 二阶电路总结.doc_第1页
第7章 二阶电路总结.doc_第2页
第7章 二阶电路总结.doc_第3页
第7章 二阶电路总结.doc_第4页
第7章 二阶电路总结.doc_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第第七七章章 二二阶阶电电路路 用二阶线性常微分方程描述的电路称为二阶电路 二阶电路中至少含有两个储能元件 当然含有两个储能元件的电路并不一定为二阶电路 比如两个电容 电感 串 并 联情况 重点 重点 1 电路微分方程的建立电路微分方程的建立 2 特征根的重要意义特征根的重要意义 3 微分方程解的物理意义微分方程解的物理意义 难点 难点 1 电路微分的解及其物理意义电路微分的解及其物理意义 2 不同特征根的讨论计算不同特征根的讨论计算 7 0 知知识识复复习习 一 二阶齐次微分方程的通解形式 0 cybyay 其特征方程为 0 2 cbpap 特征根 a acb a b p 4 4 2 2 2 1 当特征方程有不同的实根 1 p 2 p 时 tptp eAeAy 21 21 当特征方程有相同的实根 p时 pt etAAy 21 当特征方程有共轭的复根 jp 2 1 时 sincos 21 tAtAeey ttj 二 欧拉公式 sincosje j 2 sin j ee t tjtj sincosje j 2 cos tjtj ee t 7 1 二二阶阶电电路路的的零零输输入入响响应应 7 1 1 二阶电路中的能量振荡二阶电路中的能量振荡 在具体研究二阶电路的零输入响应之前 我们以仅仅含电容与电感的理想二阶电路 即 R 0 无阻尼情况 来讨论二阶电路的零输入时的电量及能量变化情况 i U0 C L C L a b C L C L U0 i c d 图图 8 1 LC 电电路路中中的的能能量量振振荡荡 设电容的初始电压为 0 U 电感的初始电流为零 在初始时刻 能量全部存储于电容中 电感中没有储能 此时电流为零 电流的变化率不为零 0 dt di Luu LC 0 dt di 这样电流将不断增大 原来存储在电容中的电能开始转移 电容的电压开始逐渐减小 当 电容电压下降到零时 电感电压也为零 此时电流的变化率也就为零 电流达到最大值 I0 此时电场能全部转化为电磁能 存储在电感中 电容电压虽然为零 但其变化率不为零 0 0 dt du CIii C LC 0 dt duC 电 路中的电流从 I0逐渐减小 电容在电流的作用下被充电 电压的极性与以前不同 当电 感中的电流下降到零的瞬间 能量再度全部存储在电容中 电容电压又达到 只是极性与 开始相反 之后电容又开始放电 此时电流的方向与上一次电容放电时的电流方向相反 与刚才 的过程相同 能量再次从电场能转化为电磁能 直到电容电压的大小与极性与初始情况一 致 电路回到初始情况 上述过程将不断重复 电路中的电压与电流也就形成周而复始的等幅振荡 可以想象 当存在耗能元件时的情况 一种可能是电阻较小 电路仍然可以形成振荡 但由于能量在电场能与电磁能之间转化时 不断地被电阻元件消耗掉 所以形成的振荡为 减幅振荡 即幅度随着时间衰减到零 另一种可能是电阻较大 电容存储的能量在第一次 转移时就有大部分被电阻消耗掉 电路中的能量已经不可能在电场能与电磁能之间往返转 移 电压 电流将直接衰减到零 7 1 2 二阶电路的微分方程二阶电路的微分方程 二阶电路如下 其中电容电压的初始值为 0 0 0 Uuu CC 电感电流的初始值为 0 0 0 LL ii S t 0 R iL t uL t uC t uL t i 图图 8 2 R L C 串串联联的的二二阶阶电电路路 根据该电路列写电路方程为 0 LRC uuu 其电路电流为 dt du Ci C 因此 dt du RCRiu C R 2 2 dt ud LC dt di Lu C R 所以 电路方程为 0 2 2 C CC u dt du RC dt ud LC 7 1 3 二阶电路微分方程的求解二阶电路微分方程的求解 方程 0 2 2 C CC u dt du RC dt ud LC 的特征方程为 01 2 RCpLCp 特征根为 LCL R L R p 1 22 2 其中 LCL R L R p 1 22 2 1 LCL R L R p 1 22 2 2 由特征根的性质 不等的实数 相等的实数或共轭的复数 就可以确定通解的具体形 式 再据电路的初始条件即可得出通解中的待定系数 7 1 4 二阶电路特征根的讨论二阶电路特征根的讨论 分别讨论特征根的情况 一 过阻尼情况 非振荡放电过程 1 过阻尼的条件 当 LCL R1 2 2 即 C L R2 C L R 4 2 时 特征根 1 p 2 p 为不相等的负实数 此时固有频率为不相等的负实数 2 过阻尼时的响应 当特征根为不相等的实数时 方程的解的形式为 tptp C eAeAtu 21 21 其中 LCL R L R p 1 22 2 1 LCL R L R p 1 22 2 2 而dt du Ci C C I dt du t C0 0 且电路的初始条件 0 0 IiL 有 而 0 0 UuC 0 0 0 LL ii 同时 dt du Ci C 0 0 0 0 CC I dt du t C 因此 初始条件为 0 0 UuC 0 0 t C dt du 代入电路方程 tptp C eAeAtu 21 21 中 就可以解出其中的待定系数 得出 12 21 21 0tptp C epep pp U tu 2121 21 0 21 210tptptptpC L ee ppL U ee pp ppCU dt du Cti 由此可见 tuC 和 tiL 均为随着时间衰减的指数函数 电路的响应为非振荡响应 其中当电流的变化率为零的时刻m t 时电流达到最大值 0 21 21 tptpL epep dt di 而 1 2 21 ln 1 p p pp tm 3 过阻尼时的响应曲线 U0 uC t I0 iL t O tm t 图图 8 3 非非振振荡荡放放电电过过程程的的响响应应曲曲线线 二 临界阻尼情况 1 临界阻尼的条件 当 LCL R1 2 2 即 C L R2 C L R 4 2 时 特征根 1 p 2 p 为相等的负实数 p 此时固有频率为相等的负实数 2 临界阻尼时的响应 当方程的特征根相同时 pt C etAAtu 21 然后可以按照初值求取待定系数 也 可以利用非振荡放电过程的解 令 L R ppp 2 21 取极限得出 非振荡放电过程的解为 12 21 21 0 tptp C epep pp U tu 令 L R ppp 2 21 取极限 根据罗必塔法则 1 lim 010 2 12 2 21 0 11 12 12 teUtepeU dp ppd dp epepd Utu ttptp tptp pp C tC L te L U dt du Cti 0 由此可见 tuC 和 tiL 也为随着时间衰减的指数函数 仍然为非振荡响应 其中 1 m t 3 临界阻尼时的响应曲线 临界阻尼时响应曲线的变化规律与过阻尼时的情况类似 U0 I0 uC t iL t O 1 t 图图 8 4 临临界界阻阻尼尼情情况况的的响响应应曲曲线线 三 欠阻尼情况 1 欠阻尼的条件 当 LCL R1 2 2 即 C L R2 C L R 4 2 时 特征根 1 p 2 p 为一对共轭复数 其实部为负数 2 欠阻尼时的响应 令L R 2 2 2 2 1 L R LC 则微分方程的特征根 jp1 jp2 如图所示 设 与 及 0 之间存在三角关系 0 即 22 0 arctg 则 cos 0 sin 0 根据欧拉公式 sincosje j 2 sin j ee t tjtj sincosje j 2 cos tjtj ee t 可将特征根写为 j ep 01 j ep 02 因此 tjjtjj tptp C eeee j U epep pp U tu 0 0 0 21 21 0 2 12 sin 2 00 00 te U j ee e U t tjtj t te L U dt tdu Ctiti tc CL sin 0 由此可见 tuC 和 tiL 均为幅值随着时间按指数规律衰减的振荡函数 电路的响应 为衰减振荡响应 3 欠阻尼时的响应曲线 U0 O 2 t 图图 8 5 振振荡荡放放电电过过程程的的响响应应曲曲线线 uC t iL t t e U 0 0 4 无阻尼的情况 无阻尼情况是欠阻尼的一种特殊情况 当 0 R 时 0 LC 1 0 2 此时的响应为 2 sin 00 tUtuC t L C Ut L U tiL 000 0 0 sinsin 由此可见 tuC 和 tiL 均为正弦函数 其幅值不随时间衰减 电路的响应为等幅振 荡响应 称为系统的固有频率 当二阶电路的激励为同频率的正弦函数时 称此时电路发 生了谐振 其物理意义类似于机械系统的共振 U0 I0 2 O 2 t 图图 8 6 振振荡荡放放电电过过程程的的响响应应曲曲线线 uC t iL t 7 2 二二阶阶电电路路的的阶阶跃跃响响应应与与冲冲激激响响应应 7 2 1 二阶电路的阶跃响应二阶电路的阶跃响应 一 定义 二阶电路在阶跃激励下的零状态响应 称为阶跃响应 S t 0 R uC t C iL t t L i 图图 8 7 RLC 串串联联的的二二阶阶电电路路的的阶阶跃跃响响应应电电路路 二 求解的步骤 二阶电路的阶跃响应的求取类似于一阶电路的阶跃响应的求取方法 其步骤为 1 计算电路的初始值 0 L i 0 dt diL 0 C u 0 dt duC 2 列写电路微分方程 根据 KCL 或 KVL 定理列写将电路方程 将其整理成有关电容电压或电感电流 状态 变量 的二阶微分方程 3 计算电路方程的特解 因为是阶跃响应 所以电路方程的特解为常数 A 且 A 可以根据初始值最后确定为阶 跃激励的强度 4 计算电路方程的通解 而电路方程的通解为齐次方程的解 因此根据其特征方程求得电路方程得特征根为 s 当 s 为两个不相等的实数 1 p 2 p 时 tptp eAeAy 21 21 当 s 为两个相同的实根 p时 pt etAAy 21 当 s 为两个共轭的复根 1 p 2 p 时 jp 2 1 时 sincos 21 tAtAeey ttj 实际上 在此情况下 欠阻尼 可以直接设电路 方程的通解为 sin tAey t 然后用初始值确定其中的待定系数 A 与 5 计算电路的初始值 原电路方程的解即为通解于特解之和 再根据电路的初始条件计算出各个待定系数 这样即可得出电路方程的解 三 响应曲线 下面给出过阻尼 临界阻尼 欠阻尼三种情况下电路方程的响应曲线 可以看出 三 种情况下的稳态值相同 t 图图 8 8 二二阶阶电电路路的的阶阶跃跃响响应应的的响响应应曲曲线线示示意意图图 欠欠阻阻尼尼情情况况 临临界界阻阻尼尼情情况况 过过阻阻尼尼情情况况 另外 我们再给出衰减振荡 欠阻尼 与等幅振荡 零阻尼 情况下的响应曲线示意 图 t 图图 8 9 二二阶阶电电路路阶阶跃跃响响应应的的等等幅幅振振荡荡与与衰衰减减振振荡荡曲曲线线示示意意图图 欠欠阻阻尼尼情情况况 零零阻阻尼尼情情况况 7 2 2 二阶电路的冲激响应二阶电路的冲激响应 一 定义 所谓 二阶电路的冲激响应 实际上是零状态的二阶电路在冲激源的作用下所产生的 响应 即为二阶电路在冲激源作用下 建立一个初始状态后产生的零输入响应 二 解法 因为已知初始状态的二阶电路的零输入响应的求法在前面的章节中已经有详细的介绍 因此要求解二阶电路的冲激响应 关键在于求出冲激激励所产生的电路初始值 R C uC t iL t t L i 图图 8 10 RLC 串串联联的的二二阶阶电电路路的的冲冲激激响响应应电电路路 7 4 状状态态方方程程 在电路系统中 以电容电压及电感电流为变量 列写出的微分方程称为 状态方程 其中的电容电压及电感电流初始值即为方程的初始值 状态方程在动态系统的研究中具有 十分重要的意义 所谓状态变量 是一组数目最少的 能够确定网络所有变量的动态变量 前面我们介 绍了电路方程的列写 实际上是用的是输入 输出方法 也就是选取我们需要研究的单个电 路变量 列写它跟输入函数之间的微分方程关系 我们称它为 输入 输出法 这种方法 常常列写出高阶微分方程 其求解存在一些困难 而且一般每一次只能描述一个变量的情 况 而列写电路方程的另一种方法是所谓的 状态变量法 也就是先找出关于一组状态变 量的一阶微分方程 然后找到该组状态变量跟激励函数的关系 也为一阶关系 称为 输 出方程 可见对于高阶电路的分析而言 状态变量分析法一方面为我们提供了所有动态变 量之间的关系 另外也将求解高阶微分方程的问题转化成为两次一阶方程的求取 电路的状态方程形式如下 BwAxx 其中 x 为电路中的状态变量向量的一阶导数 x 为电路中的状态变量向量 w 为电路 的激励向量 输入向量 A B 分别为相应的系数矩阵 电路的输出方程形式如下 DwCxr 其中r为电路中的待求响应 输出相量 x 为电路中的状态变量向量 w 为电路的激 励向量 C D 分别为相应的系数矩阵 可见该方程组为一组代数方程组 由此可见 状态方程即为有关一组状态变量方程组 下面我们举例说明 例 1 R C uC t iL t US L i 图图 8 10 例例题题 1 的的电电路路 因为 dt di LuRiU L CL

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论