完全平方公式的探究.doc_第1页
完全平方公式的探究.doc_第2页
完全平方公式的探究.doc_第3页
完全平方公式的探究.doc_第4页
完全平方公式的探究.doc_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

乘法公式完全平方公式教学目标:完全平方公式的推导及其应用;完全平方公式的几何解释;视学生对算理的理解,有意识地培养学生的思维条理性和表达能力教学重点与难点:完全平方公式的推导过程、结构特点、几何解释,灵活应用.教学过程:一、提出问题,学生自学问题:根据乘方的定义,我们知道:a2=aa,那么(a+b)2 应该写成什么样的形式呢?(a+b)2的运算结果有什么规律?计算下列各式,你能发现什么规律?(1)(p+1)2 = (p+1)(p+1) = _; (m+2)2 = _;(2)(p1)2 = (p1)(p1) = _; (m2)2 = _;学生讨论,教师归纳,得出结果:(1) (p+1)2 = (p+1)(p+1) = p2+2p+1 (m+2)2 = (m+2)(m+2) = m2+ 4m+4(2) (p1)2 = (p1)(p1) = p22p+1 (m2)2 = (m2)(m2) = m2 4m+4分析推广:结果中有两个数的平方和,而2p=2p1,4m=2m2,恰好是两个数乘积的二倍(1)(2)之间只差一个符号推广:计算(a+b)2 = _;(ab)2 = _. 得到公式,分析公式结论: (a+b)2=a2+2ab+b2 (ab)2=a22ab+b2 即:两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的2倍二、几何分析:你能根据图(1)和图(2)的面积说明完全平方公式吗?图(1)大正方形的边长为(a+b),面积就是(a+b)2,同时,大正方形可以分成图中四个部分,它们分别的面积为a2、ab、ab、b2,因此,整个面积为a2+ab+ab+b2 = a2+2ab+b2,即说明(a+b)2 = a2+2ab+b2.类似地可由图(2)说明(ab)2 = a22ab+b2.三、例题:例1应用完全平方公式计算:(1)( 4m+n)2 (2)(y)2 (3)(ab)2 (4)(ba)2解答:(1)( 4m+n)2 = 16m2+8mn+n2(2) (y)2 = y2y+(3) (ab)2 = a2+2ab+b2(4) (ba)2 = b22ba+a2例2运用完全平方公式计算:(1)1022 (2)992解答:(1)1022 = (100+2)2 = 10000+400+4 = 10404(2)992 = (1001)2 = 10000200+1 = 9801四、添括号法则在公式里的运用问题:在运用公式的时候,有些时候我们需要把一个多项式看作一个整体,把另外一个多项式看作另外一个整体,例如:(a+b+c)(ab+c)和(a+b+c)2,这就需要在式子里添加括号;那么如何加括号呢?它有什么法则呢?它与去括号有何关系呢?学生回顾去括号法则,在去括号时:a+(b+c) = a+b+c,a(b+c) = abc反过来,就得到了添括号法则:a+b+c = a+(b+c),abc = a(b+c)理解法则:如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号也是:遇“加”不变,遇“减”都变总结:添括号法则是去括号法则反过来得到的,无论是添括号,还是去括号,运算前后代数式的值都保持不变,所以我们可以用去括号法则验证所添括号后的代数式是否正确五、小结:1完全平方公式的结构特征:公式的左边是一个二项式的完全平方;右边是三项,其中有两项是左边二项式中每一项的平方,而另一项是左边二项式中两项乘积的2倍2添括号法则:如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号利用添括号法则可以将整式变形,从而灵活利用乘法公式进行计算,灵活运用公式进行运算.八年级数学科期导学案 班级: 学习小组: 学生姓名:课题14.2.2完全平方公式(1)课型新授任课教师周次第 12 周年级八年级班级章节14.2.2课时第 3课时时间学习目标知识与技能1、理解完全平方公式的意义,公式的结构特征,熟练运用公式进行计算;2、经历探索、推导完全平方公式的过程,学会观察、抽象、归纳、概括;发展符号感和推理能力;3、在合作交流中,体会从一般到特殊的认识事物;感悟类比、数形结合的思想方法。过程与方法情感态度与价值观学习重点完全平方公式的推导过程、结构特征、正确运用公式进行计算学习难点灵活应用公式进行计算学法指导 自主探究 合作交流课前导案自学1、计算下列各式,你能发现什么规律?(1)、 。(2) 。(3)、 。(4)、 。2、尝试归纳: 公式中的字母a、b可以表示 ,也可以表示单项式或 。3、(乘法的)完全平方公式用语言叙述是: 4、填表(理解公式的结构特点)(ab)2 a b a22ab+b2结果(-2m+1)2(2x-y-3)2m2-8mn+16n2课中班级展示1、你能根据图(1)、图(2)中的面积说明完全平方公式吗? 从中你有何体会与感悟?2、平方差公式的结构有什么特点?平方差公式与多项式的乘法有何关系?3、运用完全平方公式计算:(1) (2)(3) (4)4、思考:通过上题1中(3)、(4)题的运算,请问与相等吗?与相等吗?为什么?5、运用完全平方公式计算 (1)105 2 (2)198 2质疑探究提出自己的疑问,运用集体智慧,共同解决测评反馈主观题1、下列各式中计算正确的是( )A、(mn)2=m2+2nm+n2 B、(a+2b)2=a2+2ab+4b2C、(a2+b)2=a4+2a+1 D、(ab)2=a2b22、化简(a+b)2(ab)2的结果是( )A、0 B、2ab C、2ab D、4ab3、(x+y)(xy)的计算结果是( ) A、x2y2 B、x2+y2 C、x2+2xy+y2 D、x22x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论