



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数学相似知识点总结不少同学在去年的中考在有一道关于证明相似三角形判定的试题,很多同学都因为忘记相关知识而答错,误丢了分数。下面小编为大家搜索整理了初中数学相似的判定知识点总结。相似三角形判定(1)平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似。(2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。(简叙为:两边对应成比例且夹角相等,两个三角形相似。)(3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。(简叙为:三边对应成比例,两个三角形相似。)(4)如果两个三角形的两个角分别对应相等(或三个角分别对应相等),那么这两个三角形相似。直角三角形判定定理:(1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似。(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。相似三角形性质定理:(1)相似三角形的对应角相等。(2)相似三角形的对应边成比例。(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。(4)相似三角形的周长比等于相似比。(5)相似三角形的面积比等于相似比的平方。判定定理推论推论一:顶角或底角相等的两个等腰三角形相似。推论二:腰和底对应成比例的两个等腰三角形相似。推论三:有一个锐角相等的两个直角三角形相似。推论四:直角三角形被斜边上的高分成的两个直角三角形和原三角形都相似。推论五:如果一个三角形的两边和其中一边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。推论六:如果一个三角形的两边和第三边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。性质1.相似三角形对应角相等,对应边成比例。2.相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比。3.相似三角形周长的比等于相似比。4.相似三角形面积的比等于相似比的平方。5.相似三角形内切圆、外接圆直径比和周长比都和相似比相同,内切圆、外接圆面积比是相似比的平方6.若a:b =b:c,即b的平方=ac,则b叫做a,c的比例中项7.c/d=a/b 等同于ad=bc.8.必须是在同一平面内的三角形里(1)相似三角形对应角相等,对应边成比例.(2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年甘肃甘南玛曲县人民法院司法警务辅助人员考前自测高频考点模拟试题完整参考答案详解
- 2025广东惠州市博罗县广厦市政集团有限公司招聘1人模拟试卷及答案详解(夺冠系列)
- 2025广东惠州龙门县教育局招聘教师80人考前自测高频考点模拟试题及1套完整答案详解
- 服装接单合同5篇
- 2025年湖南永州东安县人民法院招聘4名编外聘用制审判辅助人员考前自测高频考点模拟试题及答案详解(必刷)
- 2025年隆昌市公开招聘社区工作者的(49人)考前自测高频考点模拟试题完整答案详解
- 2025河南民航发展投资集团有限公司招聘28人本科起报模拟试卷附答案详解(考试直接用)
- 2025年长春市绿园区公办幼儿园公开招聘临聘人员(13人)考前自测高频考点模拟试题带答案详解
- 2025河南济源示范区乡村医生“乡聘村用”招聘7人考前自测高频考点模拟试题附答案详解(考试直接用)
- 2025贵阳学院人才引进15人模拟试卷及完整答案详解1套
- 2025年电气工程及其自动化专业考试试卷及答案
- 颅脑创伤急性期凝血功能障碍诊治专家共识(2024版)解读
- 2025至2030年中国健康保险市场运行态势及行业发展前景预测报告
- 2026版创新设计高考总复习数学(人教B版)-学生答案一~五章
- 工业设计课件全套
- 中西医结合治疗冠心病
- 慢性胃炎针灸治疗
- 铁路工程勘察设计招标文件范本(2023 版)
- 干部人事档案任前审核登记表范表
- 高处安装维护拆除作业课件-改
- 肥料制造中的液体肥料研发与机械施肥技术
评论
0/150
提交评论