初中数学 与圆有关的比例线段课件 人教新课标版.ppt_第1页
初中数学 与圆有关的比例线段课件 人教新课标版.ppt_第2页
初中数学 与圆有关的比例线段课件 人教新课标版.ppt_第3页
初中数学 与圆有关的比例线段课件 人教新课标版.ppt_第4页
初中数学 与圆有关的比例线段课件 人教新课标版.ppt_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

与圆有关的比例线段 宫长路 弦切角定理 弦切角等于它所夹的弧所对的圆周角 圆周角定理 圆上一条弧所对的圆周角等于它所对的圆心角的一半 圆心角定理 圆心角的度数等于它所对弧的度数 推论 在同圆或等圆中 同弧或等弧所对的圆周角相等 反之 相等的圆周角所对的弧也相等 推论 半圆 或直径 所对的圆周角是直角 反之 的圆周角所对的弦是直径 相交弦 切割线 切线长定理 五与圆有关的比例线段 一 下面我们首先沿用从特殊到一般的思路 讨论与圆有关的相交弦的问题 探究1 如图1 ab是 o的直径 cd ab ab与cd相交于p 线段pa pb pc pd之间有什么关系 证明 连接ad bc 则由圆周角定理的推论可得 a c rt apd rt cpb 探究2 将图 中的ab向上 或向下 平移 使ab不再是直径 如图 结论 还成立吗 证明 连接ad bc 则由圆周角定理的推论可得 a c rt apd rt cpb 证明 连接ad bc 则由圆周角定理的推论可得 a c apd cpb 探究3 上面讨论了cd ab的情形 进一步地 如果cd与ab不垂直 如图 ab cd是圆内的任意两条相交弦 结论 还成立吗 pa pb pc pd 3 综上所述 不论ab cd具有什么样的位置 都有结论 成立 相交弦定理 圆内的两条相交弦 被交点分成的两条线段长的积相等 几何语言 ab cd是圆内的任意两条相交弦 交点为p pa pb pc pd 上面通过考察相交弦交角变化中有关线段的关系 得出相交弦定理 下面从新的角度考察与圆有关的比例线段 探究4 使圆的两条弦的交点从圆内 图 运动到圆上 图 再到圆外 图 结论 1 还成立吗 当点p在圆上 pa pc 0 所以pa pb pc pd 0仍成立 当点p在圆外 连接ad bc 容易证明 pad pcb 所以pa pc pd pb 即pa pb pc pd仍成立 如图 已知点p为 o外一点 割线pba pdc分别交 o于a b和c d 求证 pa pb pc pd 证法2 连接ac bd 四边形abdc为 o的内接四边形 pdb a 又 p p pbd pca pd pa pb pc pa pb pc pd 割线定理 从圆外一点引圆的两条割线 这一点到每一条割线与圆的交点的两条线段长的乘积相等 应用格式 几何语言描述 pab pcd是 o的割线 pa pb pc pd 证明 连接ac ad 同样可以证明 pad pca 所以pa pc pd pa 即pa2 pc pd仍成立 如图 已知点p为 o外一点 pa切 o于点a 割线pcd交 o于c d 求证 pa2 pc pd 证明 连接ac ad pa切 o于点a d pac 又 p p pac pda pa pd pc pa pa2 pc pd 切割线定理 从圆外一点引圆的切线和条割线 切线长是这点到割线与圆的交点的两条线段长的比例中项 应用格式 几何语言描述 pa是 o的切线 pcd是 o的割线 pa pc pd o d p c a 探究5 使圆的割线pd绕点p运动到切线位置 可以得出什么结论 思考 从这几个定理的结论里大家能发现什么共同点 1 结论都为乘积式 2 几条线段都是从同一点出发 3 都是通过三角形相似来证明 都隐含着三角形相似 另外 从全等角度可以得到 2 联系直角三角形中的射影定理 你还能想到什么 说明了 射影定理 是 相交弦定理 和 切割线定理 的特例 例1如图 圆内的两条弦ab cd相交于圆内一点p 已知pa pb 4 pc pd 4 求cd的长 解 设cd x 则pd 4 5x pc 1 5x 由相交弦定理 得pa pb pc pd 4 4 1 5x 4 5x 解得x 10 cd 10 练习1 如图 割线pab pcd分别交圆于a b和c d 1 已知pa 5 pb 8 pc 4 则pd pt 2 已知pa 5 pb 8 po 7 则半径r 10 3 练习2 如图 割线pab pcd分别交圆于a b和c d 连结ac bd 下面各比例式中成立的有 o d p a t b c pa pb 7 r 7 r pac pdb bed aec pad pcb e 练习3 如图 a是 o上一点 过a切线交直径cb的延长线于点p ad bc d为垂足 求证 pb pd po pc 分析 要证明pb pd po pc 很明显pb pd po pc在同一直线上无法直接用相似证明 且在圆里的比例线段通常化为乘积式来证明 所以可以通过证明pb pc pd po 而由切割线定理有pa2 pb pc 只需再证pa2 pd po 而pa为切线 所以连接oa 由射影定理得到 例2如图 e是圆内两弦ab和cd的交点 直线ef cb 交ad的延长线于点f fg切圆于点g 求证 1 dfe efa 2 ef fg 证明 1 ef cb def dcb dcb和 dab都是上的圆周角 dab dcb def dfe efa 公共角 dfe efa 2 由 1 知 dfe efa ef2 fa fd 又 fg是圆的切线 fg2 fa fd ef2 fg2 即fg ef 例3如图 两圆相交于a b两点 p为两圆公共弦ab上任意一点 从p引两圆的切线pc pd 求证 pc pd pc2 pa pb pd2 pa pb 证明 由切割线定理可得 pc2 pd2 即pc pd 例4如图 ab是 o的直径 过a b引两条弦ad和be 相交于点c 求证 ac ad bc be ab2 证明 连接ac ad 过c作cf ab 与ab交于f ab是 o的直径 aeb adb 900 又 afc 900 a f c e四点共圆 bc be bf ba 1 同理可证f b d c四点共圆 ac ad af ab 2 1 2 可得ac ad bc be ab af bf ab2 例5如图 ab ac是 o的切线 ade是 o的割线 连接cd bd be ce 问题1 由上述条件能推出哪些结论 cd ce ac ae cd ae ac ce 2 同理可证bd ae ac ce 3 ac ab 由 2 3 可得be cd bd ce 4 探究1 由已知条件可知 acd aec 而 cad eac adc ace 1 问题2在图1中 使线段ac绕a旋转 得到图2 其中ec交圆于g dc交圆于f 此时又能推出哪些结论 问题2在图1中 使线段ac绕a旋转 得到图2 其中ec交圆于g dc交圆于f 此时又能推出哪些结论 探究2 连接fg 与探究1所得到的结论相比较 可以猜想 acd aec 下面给出证明 ab2 ad ae 而ab ac adc ace 5 而 cad eac ac2 ad ae 同探究1的思路 还可得到探究1得出的结论 2 3 4 另一方面 由于f g e d四点共圆 cfg aec 又 acf aec cfg acf 故fg ac 6 你还能推出其他结论吗 问题3在图2中 使线段ac继续绕a旋转 使割线cfd变成切线cd 得到图3 此时又能推出哪些结论 探究3 可以推出探究1 2中得到的 1 6 的所有结论 此外 ac dg adc ace 由 7 8 两式可得 ac cd ae cg 9 连接bd be 延长gc到p 延长bd交ac于q 则 pcq pgd dbe 所以c e b q四点共圆 你还能推出其他结论吗 练习4 如图 过 o外一点p作两条割线 分别交 o于点a b和c d 再作 o的切线pe e为切点 连接ce de 已知ab 3cm pa 2cm cd 4cm 1 求pc的长 2 设ce a 试用含a的代数式表示de 解 1 由切割线定理 得pc pd pa pb ab 3 pa 2 pb ab pa 5 设pc m cd 4 pd pc cd m 4 m m 4 2 5 化简 整理得 m2 4m 10 0 解得 负数不合题意 舍去 由切割线定理得 pe pc pd pa pb 10

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论