高中数学 2.2等差数列(二)全册精品课件 新人教A版必修5.ppt_第1页
高中数学 2.2等差数列(二)全册精品课件 新人教A版必修5.ppt_第2页
高中数学 2.2等差数列(二)全册精品课件 新人教A版必修5.ppt_第3页
高中数学 2.2等差数列(二)全册精品课件 新人教A版必修5.ppt_第4页
高中数学 2.2等差数列(二)全册精品课件 新人教A版必修5.ppt_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2 2等差数列 二 复习引入 1 等差数列定义 即an an 1 d n 2 复习引入 1 等差数列定义 即an an 1 d n 2 2 等差数列通项公式 an a1 n 1 d n 1 复习引入 1 等差数列定义 即an an 1 d n 2 2 等差数列通项公式 an a1 n 1 d n 1 推导出公式 an am n m d 复习引入 1 等差数列定义 即an an 1 d n 2 2 等差数列通项公式 an a1 n 1 d n 1 推导出公式 an am n m d 或an pn q p q是常数 复习引入 3 有几种方法可以计算公差d 复习引入 3 有几种方法可以计算公差d 复习引入 3 有几种方法可以计算公差d 4 an 是首项a1 1 公差d 3的等差数列 若an 2005 则n a 667b 668c 669d 670 练习 4 an 是首项a1 1 公差d 3的等差数列 若an 2005 则n a 667b 668c 669d 670 5 在3与27之间插入7个数 使它们成为等差数列 则插入的7个数的第四个数是 a 18b 9c 12d 15 练习 6 三个数成等差数列 它们的和为18 它们的平方和为116 求这三个数 7 已知四个数成等差数列 它们的和为28 中间两项的积为40 求这四个数 练习 讲授新课 在等差数列 an 中 若m n p q 则am an ap aq 特别地 若m n 2p 则am an 2ap 1 性质 讲解范例 例1 在等差数列 an 中 1 若a5 a a10 b 求a15 2 若a3 a8 m 求a5 a6 1 定义法 证明an an 1 d 常数 2 判断数列是否为等差数列的常用方法 总结 1 定义法 证明an an 1 d 常数 2 判断数列是否为等差数列的常用方法 2 中项法 利用中项公式 若2b a c 则a b c成等差数列 总结 讲解范例 例2 已知数列 an 的前n项和为sn 3n2 2n 求证数列 an 成等差数列 并求其首项 公差 通项公式 1 定义法 证明an an 1 d 常数 2 判断数列是否为等差数列的常用方法 2 中项法 利用中项公式 若2b a c 则a b c成等差数列 3 通项公式法 等差数列的通项公式是关于n的一次函数 总结 例3 已知数列 an 的通项公式为an pn q 其中p q为常数 且p 0 那么这个数列一定是等差数列吗 讲解范例 例3 已知数列 an 的通项公式为an pn q 其中p q为常数 且p 0 那么这个数列一定是等差数列吗 讲解范例 这个等差数列的首项与公差分别是多少 例3 已知数列 an 的通项公式为an pn q 其中p q为常数 且p 0 那么这个数列一定是等差数列吗 讲解范例 这个等差数列的首项与公差分别是多少 首项a1 p q公差d p 如果一个数列的通项公式是关于正整数n的一次型函数 那么这个数列必定是等差数列 总结 探究 1 在直角坐标系中 画出通项公式为an 3n 5的数列的图象 这个图象有什么特点 探究 2 在同一个直角坐标系中 画出函数y 3x 5的图象 你发现了什么 据此说一说等差数列an pn q与一次函数y px q的图象

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论