新人教版八年级上册数学教学设计-11.1.2 三角的高、中线与角平分线 (1).doc_第1页
新人教版八年级上册数学教学设计-11.1.2 三角的高、中线与角平分线 (1).doc_第2页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

111.2三角形的高、中线与角平分线31掌握三角形的高、中线和角平分线的定义,并能够对其进行简单的应用(重点)2能够准确的画出三角形的高、中线和角平分线(难点)一、情境导入这里有一块三角形的蛋糕,如果兄弟两个想要平分的话,你该怎么办呢?本节我们一起来解决这个问题二、合作探究探究点一:三角形的高【类型一】 三角形高的画法 画ABC的边AB上的高,下列画法中,正确的是()解析:三角形的高即从三角形的顶点向对边引垂线,顶点和垂足间的线段根据概念可知解:过点C作边AB的垂线段,即画AB边上的高CD,所以画法正确的是D.故选D.方法总结:三角形任意一边上的高必须满足:(1)过该边所对的顶点;(2)垂足必须在该边或在该边的延长线上【类型二】 根据三角形的面积求高 如图所示,在ABC中,ABAC5,BC6,ADBC于点D,且AD4,若点P在边AC上移动,则BP的最小值为_解析:根据垂线段最短,可知当BPAC时,BP有最小值由ABC的面积公式可知ADBCBPAC,解得BP.方法总结:解答此题可利用面积相等作桥梁(但不求面积)求三角形的高,这种解题方法通常称为“面积法”探究点二:三角形的中线【类型一】 应用三角形的中线求线段的长 在ABC中,AC5cm,AD是ABC的中线,若ABD的周长比ADC的周长大2cm,则BA_.解析:如图,AD是ABC的中线,BDCD,ABD的周长ADC的周长(BABDAD)(ACADCD)BAAC,BA52,BA7cm.方法总结:通过本题要理解三角形的中线的定义,解决问题的关键是将ABD与ADC的周长之差转化为边长的差【类型二】 利用中线解决三角形的面积问题 如图,在ABC中,E是BC上的一点,EC2BE,点D是AC的中点,设ABC,ADF和BEF的面积分别为SABC,SADF和SBEF,且SABC12,则SADFSBEF_解析:点D是AC的中点,ADAC.SABC12,SABDSABC126.EC2BE,SABC12,SABESABC124.SABDSABE(SADFSABF)(SABFSBEF)SADFSBEF,即SADFSBEFSABDSABE642.故答案为2.方法总结:三角形的中线将三角形分成面积相等的两部分;高相等时,面积的比等于底边的比;底相等时,面积的比等于高的比探究点三:三角形的角平分线 如图,已知:AD是ABC的角平分线,CE是ABC的高,BAC60,BCE40,求ADB的度数解析:根据AD是ABC的角平分线,BAC60,得出BAD30,再利用CE是ABC的高,BCE40,得出B的度数,进而得出ADB的度数解:AD是ABC的角平分线,BAC60,DACBAD30.CE是ABC的高,BCE40,B50,ADB180BBAD1805030100.方法总结:通过本题要灵活掌握三角形的角平分线的表示方法,同时此类问题往往和三角形的高综合考查三、板书设计三角形的高、中线与角平分线1三角形的高:从三角形的一个顶点向它的对边作垂线,顶点和垂足间的线段叫做三角形的高2三角形的中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线3三角形的角平分线:三角形的一个角的平分线与这个角的对边相交,连接这个角的顶点与交点的线段叫做三角形的角平分线本节课由实际问题“平分三角形蛋糕”引入,让学生意识到数学与实际生活的密切联系,明确数学来源于实践应用于实践,进而学习用数学方法解决实际问题然后从画图入手,分三种情况:即锐角三角形、直角三角形和钝角三角形,培养学生形成分类讨论思想,同时,可以在学生头脑中对这三种线段留下清晰的形象,然后结合这些具体形象叙述它们的定义以及表示方法,最后通过例题进一步巩固数学质量检测试题命题说明一、命题指导思想: 依据小学数学课程标准及小学数学教学大纲的相关要求,本学期所学教材所涉猎的基础知识、基本技能为切入点,贯彻“以学生为本,关注每一位学生的成长”的教育思想,旨在全面培养学生的数学素养。二、命题出发点: 面向全体学生,关注不同层面学生的认知需求,以激励、呵护二年级学生学习数学的积极性,培养学生认真、严谨、科学的学习习惯,促进学生逐步形成良好的观察能力、分析能力及缜密的逻辑思维能力,培养学生学以致用的实践能力为出发点。三、命题原则: 以检验学生基础知识、基本技能,关注学生的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论