ansys及一些常用命令:.doc_第1页
ansys及一些常用命令:.doc_第2页
ansys及一些常用命令:.doc_第3页
ansys及一些常用命令:.doc_第4页
ansys及一些常用命令:.doc_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

此文档收集于网络,如有侵权,请联系网站删除/PREP7 前处理的一些常用命令: ET,1,SOLID45 定义单元类型 KEYOPT,1,2,1 单元选项(OPTION) MP,EX,1,100 定义材料参数,1为材料号 tb, 材料表(定义塑性、超弹性等) *dim,rr,array,3,2 定义数组rr为3行2列 k,1,X,Y,Z 定义KEYPOINT1坐标 LSTR,1,2 由1、2点生成线 lesize 划分网格,尺寸定义 NUMMRG,KP, , , ,LOW 压缩节点号 asel , 选择面 r, 定义实常数 wpro,-90, 旋转工作平面 esln,s 选择与节点相关的单元 emodif,all,real,i 修改单元实常数 amesh 对面划分网格 type,2 mat,2 real,1 esys,0 (或 aatt) 激活单元类型2,材料号2,实常数1,单元坐标系 vsweep,all, 扫掠网格 csys,4 激活坐标系4 -numstr,kp,100 !define the following keypoint number start with with the 100 l,1,2,4 !如果CSYS=0则生成直线,如果CSYS=1则生成弧线,这个命令与当前的坐标系统有lsel , !取线 wprof,12 !移坐标 alsv !拾取一选定实体上的所有面 nsla !同理,拾取一选定面上的所有节点 aatt,1,1,1 !等效于楼上的 MAT,1 TYPE,1 REAL, 1对面定义属性 mshke,0 !网格格划分进行限定:采用FREE进行划分;网格形状为 四 边形或六面体 mshape,1,2d vmesh ,2 !划分实体网格,后面的参数是实体编号如:2 /solu !进入求解过程 antype,static !选择求解类型为静力分析 asel,s,loc,x, nsla d,all,uy,roty,rotz !对选定的面上的所有节点施加UY ROTY ROTZ 的对称约束. allsel !恢复全部选择等效于:ASELL,ALL ESEL,ALL NSEL,ALL asel,s,1 sfa,all,1,press,1000 !对选定的面1施加均布力1000 allsel /stat,slou !显示求解状况 solve /post1 !进入后处理 set,list !列出求解的步数及相关信息 set,last !读取最后一步结果 plns,s,eqv,1 !绘出节点的等效应力云图 plns,epto,eqv !绘出节点的等效应变云图 /post26 !进入时间后处理器 plvar,2 !对以定义的变量2用曲线绘出 /exit,save !退出并存盘 好了,参照楼上师兄的命令,一个简单的ANSYS分析就进行完了. 愿大家共同进步! * - k, l, a, v, e, n, cm, et, mp, r where = k - Keypoints l - Lines a - Area v - Volumes e - Elements n - Nodes cm - component et - element type mp - material property r - real constant $ - d, f, sf, bf, ic, where = d - DOF constraint (ux. in Structural, Temp in thermal, f - Force Load ( Heat in thermal) sf - Surface load on nodes bf - Body Force on Nodes $* - dk - DOF constraints on KP (Vx,Vy,Pres. in CFD) dl - DOF constraints on Lines da - DOF constraints on Areas fk - Force on Keypoints sfl - Surface load on Lines sfa - Surface load on Areas sfe - Surface load on element faces bfk - Body Force on Keypoints bfl - Body Force on Lines bfa - Body Force on Area bfv - Body Force on Volumes bfe - Body Force on Elements ic - Initial Conditions , asba,p - Subtract Area from Area asbl,p - Divide Area by line vsba,p - Divide volume by Area lsbw,p - Divide line by Workplane vsbw,p - Divide volume by Workplane asbw,p - Divide area by Workplane vsbv,p - subtract Volume by another volumevdrag,p - Drag areas along a line to create a new volume adrag,p - Drag line along a line to create a new area ldrag,p - Drag KP along a line to create a new line k,p - Allows user to pick KP in the Workplane l,p - Create lines from existing KP ak,p - Create area from KP al,p - Create area from lines v,p - Create Volume from KP va,p - Create Volume from Areas e,p - Create Elem from existing nodes en,p - Create Elem from nodes D,p - To apply DOF on nodes DK,p - To apply DOF on Keypoints DL,p - Apply DOF on Lines DA,p - Apply DOF on Areas ( symmetry or Anti-symmetry will be prompted) * 16b. FORCE Loading: COMMAND SYNTAX : $*,p See the valid combinations below: f,p - Forces on nodes fk,p - Force on Keypoints (fa,p or FV,p or FL,p - Since force cannot be applied on Lines or Area & volumes. this command does not exist.) sf,p - Surface Load on a set of Nodes sfl,p - Surface Load on Lines sfa,p - Surface Load on Area sfe,p - Surface Load on Element (SFk,p and SFV,p do not exist since pressure cannot be applied on a single Kp and neither can it be applied on a volume) * 16d. BodyForce Load: COMMAND SYNTAX : bf*,p See the valid combinations below: bf,p - Bodyforce Load on a set of Nodes bfk,p - Bodyforce Load on KP bfl,p - Bodyforce Load on Lines bfa,p - Bodyforce Load on Areas bfv,p - Bodyforce Load on Volumes bfe,p - Bodyforce Load on E-ANSYS具有混合网格剖分的功能。例如两个粘在一起的面,可以对一个面进行三角形划分,再对另一个面进行四边形划分。过程见下列命令: /prep7 et,1,42 rect,1,1 rect,1,2,1 aglue,all mshape,0,2d amesh,1 mshape,1,2d amesh,3FINISH /CLEAR /Title, Cross-Sectional Results of a Simple Cantilever Beam /PREP7 ! All dims in mm Width = 60 Height = 40 Length = 400 BLC4,0,0,Width,Height,Length! Creates a rectangle /ANGLE, 1 ,60.000000,YS,1 ! Rotates the display /REPLOT,FAST! Fast redisplay ET,1,SOLID45 ! Element type MP,EX,1,200000 ! Youngs Modulus MP,PRXY,1,0.3! Poissons ratio esize,20! Element size vmesh,all! Mesh the volume FINISH /SOLU ! Enter solution mode ANTYPE,0! Static analysis ASEL,S,LOC,Z,0! Area select at z=0 DA,All,ALL,0! Constrain the area ASEL,ALL! Reselect all areas KSEL,S,LOC,Z,Length! Select certain keypoint KSEL,R,LOC,Y,Height KSEL,R,LOC,X,Width FK,All,FY,-2500! Force on keypoint KSEL,ALL! Reselect all keypoints SOLVE! Solve FINISH /POST1 ! Enter post processor PLNSOL,U,SUM,0,1! Plot deflection WPOFFS,Width/2,0,0 ! Offset the working plane for cross-section view WPROTA,0,0,90! Rotate working plane /CPLANE,1 ! Cutting plane defined to use the WP /TYPE,1,8 ! QSLICE display WPCSYS,-1,0! Deflines working plane location WPOFFS,0,0,1/16*Length ! Offset the working plane /CPLANE,1 ! Cutting plane defined to use the WP /TYPE,1,5 ! Use the capped hidden display PLNSOL,S,EQV,0,1! Plot equivalent stress !Animation ANCUT,43,0.1,5,0.05,0,0.1,7,14,2 ! Animate the slices1.2 设材料线弹性、非线性特性 u mp,lab, mat, co, c1,.c4 定义材料号及特性 lab: 待定义的特性项目(ex,alpx,reft,prxy,nuxy,gxy,mu,dens) ex: 弹性模量 nuxy: 小泊松比 alpx: 热膨胀系数 reft: 参考温度 reft: 参考温度 prxy: 主泊松比 gxy: 剪切模量 mu: 摩擦系数 dens: 质量密度 mat: 材料编号(缺省为当前材料号) co: 材料特性值,或材料之特性,温度曲线中的常数项 c1-c4: 材料的特性-温度曲线中1次项,2次项,3次项,4次项的系数 u Tb, lab, mat, ntemp,npts,tbopt,eosopt 定义非线性材料特性表 Lab: 材料特性表之种类 Bkin: 双线性随动强化 Biso: 双线性等向强化 Mkin: 多线性随动强化(最多5个点) Miso: 多线性等向强化(最多100个点) Dp: dp模型 Mat: 材料号 Ntemp: 数据的温度数 对于bkin: ntemp缺省为6 miso: ntemp缺省为1,最多20 biso: ntemp缺省为6,最多为6 dp: ntemp, npts, tbopt 全用不上 Npts: 对某一给定温度数据的点数 u TBTEMP,temp,kmod 为材料表定义温度值 temp: 温度值 kmod: 缺省为定义一个新温度值 如果是某一整数,则重新定义材料表中的温度值 注意:此命令一发生,则后面的TBDATA和TBPT均指此温度,应该按升序 若Kmod为crit, 且temp为空,则其后的tbdata数据为solid46,shell99,solid191中所述破坏准则 如果kmod为strain,且temp为空,则其后tbdata数据为mkin中特性。 u TBDATA, stloc, c1,c2,c3,c4,c5,c6 给当前数据表定义数据(配合tbtemp,及tb使用) stloc: 所要输入数据在数据表中的初始位置,缺省为上一次的位置加1 每重新发生一次tb或tbtemp命令上一次位置重设为1, (发生tb后第一次用空闲此项,则c1赋给第一个常数) u tbpt, oper, x,y 在应力-应变曲线上定义一个点 oper: defi 定义一个点 dele 删除一个点 x,y:坐标 -! ELLIPT by Hai C. Tang in tang/ansys ! Creates an elliptic area ! *USE,ELLIPT,A,B,N ! where x*2/a*2 + y*2/b*2 = 1 ! and the whole elliptic arc is divided into N parts ! equally by the angle at origin *SET,A,ARG1 *SET,B,ARG2 *SET,N,ARG3 *AFUN,DEG THETA=360.0/N K,A *GET,KMIN,KP,NUM,MAX *DO,I,1,N ANGX=I*THETA X=A*COS(ANGX) Y=B*SIN(ANGX) K,X,Y *GET,KMAX,KP,NUM,MAX L,KMAX-1,KMAX *ENDDO *GET,LMAX,LINE,NUM,MAX LMIN=LMAX-N+1 NUMMRG,ALL LSEL,S,LINE,LMIN,LMAX AL,ALL LSEL,ALL An ANSYS program Using Macro /PREP7 ET,1,42 R,1,.25 MP,EX,1,1e7 $*$USE,ELLIPT,.05,.2,36 /pnum,kp,1 RECTNG,3,2 /pnum,area,1 aplot asba,2,1 kesize,10,.01 ksel,s,kp,1,5 kesize,all,.04 ksel,s,kp,38,40 kesize,all,.2 ksel,all amesh,3 save FINISH /SOLU lsel,s,line,41,42 dl,all,3,symm lsel,all sfl,38,pres,-100 solve FINISH /POST1 PLNSOL,S,EQV Mesh Refinement High gradient areas generally require finer meshes. Meshes can be refined with: Adaptive meshing User adjustment Adaptive meshing automatically evaluates mesh discretization error in each element and determines if a particular mesh is fine enough. If it is not, the element is refined with finer meshes automatically. Users can also revise the mesh by modifying the mesh controls after they have reviewed the results of initial runs. Only the meshes in the regions of steep gradients need to be revised. Usually this is less CPU intensive and is more applicable to the situation that requires only minor adjustments. Consider the solution for the semi-infinite plate with an elliptic crack in last example. Clearly the steep gradient is located near the crack tip, and only the tip area need to be refined. So lets binarily bisect tip element m times with the following formula; m = log(b/a + 1) A Mesh Refinement Example ! *USE,ELLIPTQ,A,B,N *SET,A,ARG1 *SET,B,ARG2 *SET,N,ARG3 *AFUN,DEG THETA=90.0/N K *GET,KMIN,KP,NUM,MAX K,A L,KMIN,KMIN+1 *GET,LMIN,LINE,NUM,MAX *IF,A,GT,B,THEN M=LOG(A/B+1) ANGX=THETA/2*(M+1) *DO,I,1,M ANGX=ANGX*2 X=A*COS(ANGX) Y=B*SIN(ANGX) K,X,Y *GET,KMAX,KP,NUM,MAX L,KMAX-1,KMAX *ENDDO *ENDIF *DO,I,1,N-1 ANGX=I*THETA X=A*COS(ANGX) Y=B*SIN(ANGX) K,X,Y *GET,KMAX,KP,NUM,MAX L,KMAX-1,KMAX *ENDDO *IF,A,LT,B,THEN M=LOG(B/A+1) ANGM=THETA *DO,I,1,M ANGM=ANGM/2 ANGX=ANGX+ANGM X=A*COS(ANGX) Y=B*SIN(ANGX) K,X,Y *GET,KMAX,KP,NUM,MAX L,KMAX-1,KMAX *ENDDO *ENDIF ANGX=N*THETA X=A*COS(ANGX) Y=B*SIN(ANGX) K,X,Y *GET,KMAX,KP,NUM,MAX L,KMAX-1,KMAX L,KMAX,KMIN *GET,LMAX,LINE,NUM,MAX NUMMRG,ALL LSEL,S,LINE,LMIN,LMAX AL,ALL LSEL,ALL A Mesh Refinement Example /PREP7 ET,1,42 R,1,.25 MP,EX,1,1e7 ELLIPTQ,.05,.2,9 /pnum,kp,1 RECTNG,3,2 /pnum,area,1 aplot asba,2,1 ksel,s,kp,11,13 kesize,all,.005 ksel,s,kp,9,10 kesize,all,.001 ksel,all kesize,2,.02 ksel,s,kp,15,17 kesize,all,.2 ksel,all amesh,3 save FINISH /SOLU lsel,s,line,18,19 dl,all,3,symm lsel,all sfl,15,pres,-100 solve FINISH /POST1 PLNSOL,S,EQV Graphics Display The first command in an interactive ANSYS run, /SHOW specifies the graphics device driver. The most common drivers at NIST are: X11,X11C, etc X-windows based 3D For local run only 3D has local graphics functions that work only the workstation actually running the ANSYS program. X-windows allow users to run ANSYS on a network connected remote machine and to instantaneously display the results on a local workstation or a X-terminal. ANSYS has two types of commands that control a display: Graphics action commands: xPLOT displays elements/volumes/areas/lines x = E,V,A,L,K,N /keypoints/nodes,respectively PLNSOL plots nodal solution PLESOL plots element solution etc. Graphics specification commands: /PNUM,label,key specifies if numbers of label are shown /PBC,item,component,key specifies if constraints or loads are shown /PSYMB,label,key specifies if symbols(CS/LDIR etc) are shown /EDGE,wn,key,angle specifies if edges are shown etc. Selective displays can be made with the nodes and elements SELECT utilities - ASEL, NSLA, NSEL, ESEL, etc. If a selective command is issued before the PLNSOL command, only the results on the selected elements will be displayed. The following comands are the frquently used graphics commands: PLNSOL,item,comp Displays the solution results as continuous contours PLDISP,kund,kscal Displays the displaced structure /WINDOW,wn,xmin,xmax, Defines window size on screen ymin,ymax,ncopy /TYPE,wn,type Defines type of display /FOCUS,wn,xf,yf,zf,ktrans Defines the location of object to be at the center of the window /DIST,wn,dval,kfact Defines the viewing distance for magnification and perspective /VIEW,wn,xv,yv,zv Defines the viewing direction of the ojbect Grph menu button Interactive graphics for Zoom, Rotation, and Translation Use of Generic Utilities In Revision 5.0, many utility commands are generic and consistent for all disciplines, and they are available throughout the program. For example, select logic and components are available anywhere in the program, at anytime, and button menus are also available. The type of selection (reselect, unselect, additional select, all, etc.) has been moved to the first field on the command, and there are more fields for the basis of selection. NSEL ESEL KSEL LSEL ASEL VSEL CMSEL Exiting the PREP7 preprocess FINISH command at the end of PREP7 modeling does not save the database; issue SAVE command to save the database before exiting the process. ANSYS Example 1 Thermal Modeling of a Cryogenic Radiometer Given: A radiometer at cryogenic temperature is applied with a constatnt heat flux at given nodes on the surface of a 2-layer cone whose base is welded to a cylindrical tube. The radiometer is modeled with axial symmetry. ANSYS Program for Example 1 /FILNAM,AXSYM1 ! Specify prefix of file names /TITLE,Cryogenic Radiometer /UNITS,cgs ! SI units: cm,g,s,K,1e-7 J, etc. ! for reference only /PREP7 ! Begin PREP7 preprocessing phase ET,1,55,1 ! 2-D 4 node PLANE element, axial sym. ! ET,1,PLANE77 ! 2-D 8 node PLANE element ! MPTEMP,1,2,5,10,20 ! Temp. at 2,5,10,and 20 K MPTEMP,1,0,2.8,7.8,17.8 ! Temp = ABTemp - 2.2 K /COM,Thermal Conductivity, KXX, ABW/cm.K (1E-7 W/cm.K) MPDATA,KXX,1,1,1.69E7,3.10E7,5.74E7,10.75E7 ! MAT 1 (Cu) MPDATA,KXX,2,1,2.2E4,5.0E4,10.0E4,20.0E4 ! MAT 2 (Paint) MPDATA,KXX,3,1,1.57E4,3.69E4,7.96E4,18.3E4 ! MAT 3 (SS) /COM,Specific Heat, C, ABJ/kg.K MPDATA,C,1,1,0.355E3,1.8E3,9.0E3,73.0E3 ! MAT 1 MPDATA,C,2,1,0.144E3,9.23E3,23.1E3,51.0E3 ! MAT 2 MPDATA,C,3,1,1.0E4,2.4E4,5.0E4,13.0E4 ! MAT 3 MP,DENS,1,9.08 ! Density for MAT 1 MP,DENS,2,1.154 ! Density for MAT 2 MP,DENS,3,8.00 ! Density for MAT 3 /COM, * Define Geometry R=1.9185 ! SET radius, cone1 R1=1.905 ! SET radius, cone2 R2=1.8995 ! SET radius, cone3 R3=1.900 ! SET radius, cylinder I.D. H=4.632 ! SET Height of cone1 H1=4.600 ! SET Height of cone2 H2=4.586 ! SET Height of cone3 H3=-5.0E-1 ! SET Height of cylinder (MAT 1) H4=-3.50 ! SET Height of cylinder (MAT 3) THK1=R-R1 ! Cylinder thickness and cone disp for MAT 1 THK2=R1-R2 ! Paint displacement in x-dir for MAT 2 THK3=R1-R3 ! Cylinder thickness for MAT 3 DH=0.05 DR=DH*R/H ! rate of change of copper cone radius DH1=0.02 DR1=DH1*R/H ! rate of change of copper cone radius ! near the tip CSYS,0 N,1,R,H3 ! Node 1 NGEN,11,1,1,0,DH ! Node 1-11 NGEN,91,1,11,-DR,DH ! Node 11-101 NGEN,5,1,101,-DR1,DH1 ! Node 101-105 N,150,0,H ! Node 150 is the tip of cone1 NGEN,2,200,1,105,1,-THK1 ! Node 201-305 N,350,0,H1 ! Node 350 is the tip of cone2 NGEN,2,1,350,THK1 ! Node 351 on cone1 NGEN,2,200,211,305,1,-THK2 &! Node 411-505 N,550,0,H2 ! Node 550 is the tip of cone3 NGEN,2,1,550,THK2 ! Node 551 on cone2 NGEN,2,1,551,THK1 ! Node 552 on cone1 N,601,R1,H4 ! Node 601 at cylinder bottom NGEN,71,1,601,0,DH ! Node 601-671 NGEN,2,100,601,671,1,-THK3 ! Node 701-771 MAT,1 &! MAT 1 is copper E,201,1,2,202 ! Elem 1 EGEN,104,1,1 ! Elem 1-104 /PNUM,ELEM,1 E,305,105,552,551 ! Elem 105 E,551,552,351,350 ! Elem 106 E,350,351,150,150 ! Elem 107 EPLOT *ASK,KC, to continue:,0 *IF,KC,NE,0,THEN FINISH /EXIT *ENDIF MAT,2 &! MAT 2 is paint E,411,211,212,412 ! Elem 108 EGEN,94,1,108 ! Elem 108-201 E,505,305,551,550 ! Elem 202 E,550,551,350,350 ! Elem 203 EPLOT *ASK,KC, to continue:,0 *$IF,KC,NE,0,THEN FINISH /EXIT *ENDIF MAT,3 ! MAT 3 is stainless steel E,701,601,602,702 ! Elem 204 *GET,LELM,ELEM,NUM,MAX ! Find the last element number ! LELM=204 EGEN,70,1,LELM ! Elem 204-273 EPLOT NUMMRG,NODE SAVE FINISH ANSYS Example 2 /TITLE, Full NIST Piezo Shaker, Case A with Damping /PREP7 ET,1,SOLID5 ! 3-D Multi field solid element /COM, * Material properties for Piezoelectric /COM, * ceramic PZT-5 - CLEVITE CORP MP,DENS,3,.000722 /COM, * Permittivity (X,Y and Z Directions) MP,PERX,3,3.8853E-10 TB,PIEZ,3 ! E = Piezoelectric matrix TBDATA,3,-.00511 TBDATA,6,-.00511 TBDATA,9,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论