全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
连云港市中考试题精粹 备课人:纪红芳 审核:1如图,是由8个相同的小立方块搭成的几何体的左视图,它的三个视图是22的正方形若拿掉若干个小立方块后(几何体不倒掉),其三个视图仍都为22的正方形,则最多能拿掉小立方块的个数为A1 B2 C3 D42(2013连云港)如图,正方形ABCD的边长为4,点E在对角线BD上,且BAE=22.5,EFAB,垂足为F,则EF的长为()A1BC42 D343(2013连云港)如图,一束平行太阳光线照射到正五边形上,则1=30从正面看4如图,点D为AC上一点,点O为边AB上一点,ADDO以O为圆心,OD长为半径作圆,交AC于另一点E,交AB于点F,G,连接EF若BAC22,则EFG_ 5(2013连云港)点O在直线AB上,点A1、A2、A3,在射线OA上,点B1、B2、B3,在射线OB上,图中的每一个实线段和虚线段的长均为一个单位长度,一个动点M从O点出发,按如图所示的箭头方向沿着实线段和以O为圆心的半圆匀速运动,速度为每秒1个单位长度,按此规律,则动点M到达A101点处所需时间为(101+5050)秒第7题ADBADCFEBADA1A2A3B1B2B3第5题ADBADCFEBADBDEP6矩形纸片ABCD中,AB3,AD4,将纸片折叠,使点B落在边CD上的B处,折痕为AE在折痕AE上存在一点P到边CD的距离与到点B的距离相等,则此相等距离为_7如图,ABC的面积为1,分别取AC、BC两边的中点A1、B1,则四边形A1ABB1的面积为,再分别取A1C、B1C的中点A2、B2,A2C、B2C的中点A3、B3,依次取下去利用这一图形,能直观地计算出_ 8(2013连云港)甲、乙、丙三人之间相互传球,球从一个人手中随机传到另外一个人手中,共传球三次(1)若开始时球在甲手中,求经过三次传球后,球传回到甲手中的概率是多少?(2)若乙想使球经过三次传递后,球落在自己手中的概率最大,乙会让球开始时在谁手中?请说明理由9因长期干旱,甲水库蓄水量降到了正常水位的最低值为灌溉需要,由乙水库向甲水库匀速供水,20h后,甲水库打开一个排灌闸为农田匀速灌溉,又经过20h,甲水库打开另一个排灌闸同时灌溉,再经过40h,乙水库停止供水甲水库每个排泄闸的灌溉速度相同,图中的折线表示甲水库蓄水量Q (万m3) 与时间t (h) 之间的函数关系求:(1)线段BC的函数表达式;(2)乙水库供水速度和甲水库一个排灌闸的灌溉速度;(3)乙水库停止供水后,经过多长时间甲水库蓄水量又降到了正常水位的最低值?10(2013连云港)如图,已知一次函数y=2x+2的图象与x轴交于点B,与反比例函数y=的图象的一个交点为A(1,m)过点B作AB的垂线BD,与反比例函数y=(x0)的图象交于点D(n,2)(1)求k1和k2的值;(2)若直线AB、BD分别交x轴于点C、E,试问在y轴上是否存在一个点F,使得BDFACE?若存在,求出点F的坐标;若不存在,请说明理由11如图,甲、乙两人分别从A(1,)、B(6,0)两点同时出发,点O为坐标原点,甲沿AO方向、乙沿BO方向均以4km/h的速度行驶,th后,甲到达M点,乙到达N点(1)请说明甲、乙两人到达O点前,MN与AB不可能平行(2)当t为何值时,OMNOBA?(3)甲、乙两人之间的距离为MN的长,设sMN2,求s与t之间的函数关系式,并求甲、乙两人之间距离的最小值12已知AOB60,半径为3cm的P沿边OA从右向左平行移动,与边OA相切的切点记为点C(1)P移动到与边OB相切时(如图),切点为D,求劣弧的长;(2)P移动到与边OB相交于点E,F,若EF4cm,求OC的长;13如图,在平面直角坐标系中,O为坐标原点,C的圆心坐标为(2,2),半径为函数yx2的图象与x轴交于点A,与y轴交于点B,点P为AB上一动点(1)连接CO,求证:COAB;(2)若POA是等腰三角形,求点P的坐标;ADBADxPOCFEBADy(3)当直线PO与C相切时,求POA的度数;当直线PO与C相交时,设交点为E、F,点M为线段EF的中点,令POt,MOs,求s与t之间的函数关系,并写出t的取值范围14如果一条直线把一个平面图形的面积分成相等的两部分,我们把这条直线称为这个平面图形的一条面积等分线如,平行四边形的一条对线所在的直线就是平行四边形的一条面积等分线(1)三角形的中线、高线、角平分线分别所在的直线一定是三角形的面积等分线的有_;(2)如图1,梯形ABCD中,ABDC,如果延长DC到E,使CEAB,连接AE,那么有S梯形ABCDSABE请你给出这个结论成立的理由,并过点A作出梯形ABCD的面积等分线(不写作法,保留作图痕迹);(3)如图,四边形ABCD中,AB与CD不平行,SADCSABC,过点A能否作出四边形ABCD的面积等分线?若能,请画出面积等分线,并给出证明;若不能,说明理由ADBADEBADCFEBADDQFEBAD图1ADBADCFEBADDQFEBAD图215已知梯形ABCD,ADBC,ABBC,AD1,AB2,BC3(1)如图1,P为AB边上的一点,以PD、PC为边作PCQD,请问对角线PQ,DC的长能否相等,为什么?(2)如图2,若P为AB边上一点,以PD,PC为边作PCQD,请问对角线PQ的长是否存在最小值?如果存在,请求出最小值,如果不存在,请说明理由(3)若P为AB边上任意一点,延长PD到E,使DEPD,再以PE、PC为边作PCQE,请探究对角线PQ的长是否也存在最小
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年教师资格之小学教育教学知识与能力押题练习试卷A卷附答案
- 2025西安市购房合同
- 2025年农村自建房屋购买合同协议书
- 2025年智能POS终端销售合同样本
- 2025房产交易的合同范本
- 2025年合同在线上购买
- 幼儿园暑假培训内容
- 放射影像诊断技术分享
- 大肠息肉的监测流程
- 资产管理年度计划
- 坚果油冷榨提取设备创新创业项目商业计划书
- 雨课堂在线学堂《项目管理概论》作业单元考核答案
- 食品废料回收合同范本
- 2024年湖南省常规选调生考试真题
- 客户信息管理标准流程手册
- 泌尿结石健康宣教
- 2025年甘肃龙泰实业有限责任公司招聘工作人员笔试考试备考题库及答案解析
- 夜间施工方案及安全措施
- 战时金融科技应用-洞察与解读
- GB/T 46412-2025资产管理碳资产管理体系应用指南
- 儿童多指畸形手术方法
评论
0/150
提交评论