《用配方法解一元二次方程》说课稿.doc_第1页
《用配方法解一元二次方程》说课稿.doc_第2页
《用配方法解一元二次方程》说课稿.doc_第3页
《用配方法解一元二次方程》说课稿.doc_第4页
《用配方法解一元二次方程》说课稿.doc_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

用配方法解一元二次方程说课稿 崇岗九年制学校 虎文学 各位评委老师你们好!今天我说课的题目是九年级上册第二十二章第二节的配方法解一元二次方程:一、教材的地位和作用一元二次方程的解法是本章的重点内容,其中包括配方法、公式法和因式分解法,“配方法”是学生接触到的的第二种一元二次方程的解法,它是以直接开方法为基础的一次深入探究,是由特殊到一般的一个拓展过程,又对继续学习后面的公式法有着指导和铺垫,具有承上启下的作用。通过这节课的学习,不但可以使学生掌握一种基本的运算方法,还可以培养学生探索与归纳能力,提高小组合作意识。二、教学目标:1.知识目标:(1).了解配方法的定义,掌握配方法解一元二次方程的步骤; (2).会用配方法解数字系数为1的一元二次方程;2.能力目标:提高自学能力、归纳能力、交流能力,增强思维能力。3.情感态度:通过学生间交流、探索,进一步激发学生的学习热情,求知欲望,同时提高小组合作意识和一丝不苟的精神。三、教学重难点:重点:会用配方法解数字系数为1的一元二次方程 难点:熟练进行配方四、学情分析经过初中两年的学习,他们已经具备了一定的探索能力,也初步养成了合作交流的习惯。大多数学生的好胜心比较强,性格比较活泼,他们希望有展现自我才华的机会,但是对于九年级的农村中学的学生来说,他们独立分析问题的能力和灵活应用的能力还有待提高,很多时候还需要教师的点拨和引导。因此,我遵循学生的认识规律,由浅入深,适时引导,调动学生的积极性,并适当地给予表扬和鼓励,借此增强他们的自信心。五、教法学法分析教学方法:我采用了引导探索法,整个探索学习的过程充满了师生之间,生生之间的交流和互动,体现了教师是教学活动的组织者、引导者、合作者,学生才是数学学习的主人。教学手段:我利用课件辅助教学,适时呈现问题情景,以丰富学生的感性认识,增强直观效果,提高课堂效率。 启发、引导、点拔、评价学法: 利用学生的好奇心设疑、解疑,组织互动、有效的教学活动,鼓动学生积极参与,大胆猜想,使学生在自主探索和合作交流中, 观察猜测 交流讨论 分析推理 归纳总结,理解和掌握本节课的内容。六、教学过程:(一)创设情境,提出问题首先以实际问题引入:要使一块矩形场地的长比宽多6m,并且面积为16m2,场地的长和宽应各是多少?将学生放置于实际问题的背景下,有助于激发学生的主动性和求知欲。,学生发现这个方程暂时不会解,感受到问题的存在。这时教师引导学生思考如何解所列方程?怎样把它转化为我们已经会解的方程?”(二)对比探究,解决问题本节课力求在学生已有知识和经验基础之上,让学生通过观察、对比、联想、转化,自主发现解决问题的方向和规律,理解和掌握配方法。因此,在这一阶段活动中以问题为引导设置了四个具体环节。问题(1):我们会解什么样的一元二次方程?举例说明。用问题唤起学生的记忆,明确现在会求解的方程的特点是:等号一边是完全平方式,另一边是一个非负常数的形式,运用直接开平方可以求解。这是后面配方转化的目标,也是对比研究的基础。问题(2):把你得出的方程和会解的方程进行对比,你能得到什么启发?问题(3):探索的求解过程和方法。这里要给学生充分的时间进行思考和交流,教师在学生小组交流后,组织全班进行讨论,通过观察方程的结构与完全平方式的联系找到问题的突破口。在问题(1)、(2)的基础上,学生获得了解决问题的基本思路,即将方程转化成的形式。学生通过观察方程结构,发现=0虽然不是完全平方式,但前两项具有完全平方式的特征,只要通过添加条件即可凑成完全平方式即“配方”。因此,为避免干扰,先将常数项16移项至方程右边,此时方程化为。对比完全平方式,学生不难发现,方程左边加上一个常数9,就能凑成完全平方式,因此可以根据等式性质在方程两边都加上9,将方程化为,即,从而成功地完成了由“不会解”到“会解”的转化。引导学生概括、归纳出配方法的定义和用配方法解一元二次方程的步骤,然后指导学生快速记忆,掌握用配方法解一元二次方程的步骤: 1.化 1: 把二次项系数化为1;2.移项: 把常数项移到方程的右边;3.配方: 方程两边都加上一次项系数一半的平方;4.变形: 方程左边分解因式,右边合并同类项;5.开方: 方程两边开平方;6.求解: 解一元一次方程;7.定解: 写出原方程的解 完成例4问题(4):配方的目的是什么?配方时应注意什么?在完成这一系列探究活动后,教师提出问题引导学生回顾探究过程,进行阶段性小结。明确配方的目的是通过配成完全平方形式来解方程。对二次项系数是1的一元二次方程配方时要注意在方程两边都加上一次项系数一半的平方。 完成例5(三)随堂练习,巩固深化教科书25页1题 2题(四)小结梳理,分层作业用你的语言描述一下配方法解一元二次方程的基本步骤和需注意的问题。教师引导学生进行反思、归纳配方法解一元二次方程的基本思路、步骤及注意事项。巩固对课堂知识的理解和掌握,同时进一步体会解一元二次方程时降次的基本策略和转化的思想。作业:(1)基础题:教科书28页,练习(1)、31页2(2)及x2+10x+9=0(2)思考题:用配方法解方程。以上是我对配方法解一元二次方程这一课时的教学设计,请各位评委老师批评指正,谢谢。22.2.降次解一元二次方程22.2.1配方法(第2课时)【学习目标】1、 能说出用配方法解一元二次方程的基本步骤;知道“配方法”是一种常用的数学方法。2、 会用配方法解数字系数的一元二次方程。【学习过程】一、温故知新:1、 填上适当的数,使下列各式成立,并总结其中的规律。(1)x2+ 6x+ =(x+3)2 (2) x2+8x+ =(x+ )2 (3)x2-12x+ =(x- )2 (4) x2-+ =(x- )2(5)a2+2ab+ =(a+ )2 (6)a2-2ab+ =(a- )22、用直接开平方法解方程:x2+6x+9=2 二、自主学习:自学课本36-P38思考下列问题:1、 仔细观察教材问题2,所列出的方程x2+6x-16=0利用直接开平方法能解吗?2、 怎样解方程x2+6x-16=0?看教材框图,能理解框图中的每一步吗?(同学之间可以交流、师生间也可交流。)3、 讨论:在框图中第二步为什么方程两边加9?加其它数行吗?4、 什么叫配方法?配方法的目的是什么?5、 配方的关键是什么?交流与点拨:重点在第2个问题,可以互相交流框图中的每一步,实际上也是第3个问题的讨论,教师这时对框图中重点步骤作讲解,特别是两边加9是配方的关键,使之配成完全平方式。利用22ab+b2=(ab)2。注意9=()2,而6是方程一次项系数。所以得出配方是方程两边加上一次项系数一半的平方,从而配成完全平方式。交流与点拨:用配方法解一元二次方程的一般步骤:(1)将方程化成一般形式并把二次项系数化成1;(方程两边都除以二次项系数)(2)移项,使方程左边只含有二次项和一次项,右边为常数项。(3)配方,方程两边都加上一次项系数一半的平方。(4)原方程变为(x+k)2=a的形式。(5)如果右边是非负数,就可用直接开平方法求取方程的解。三、典型例题例(教材P38例1)解下列方程:(1)x2-8x+1=0 (2) x2-6x+16=0解: 解:(教师要选择例题书写解题过程,通过例题的学习让学生仔细体会用配方法解方程的一般步骤。)四、巩固练习1、教材39练习1(做在课本上,学生口答)2、教材39练习2 解下列方程:(1)x2+10x+9=0 (2)x2-x-=0 (3)x2-2x-99=0 解: 解: 解:(4)x2+9=-8x(5)x2+4x-9=2x-11 (6)x(x+4) =8x+12 解: 解: 解:(对于第二题根据时间可以分两组完成,学生板演,教师点评。)五、总结反思:(针对学习目标)可由学生自己完成,教师作适当补充。1、理解配方法解方程的含义。2、要熟练配方法的技巧,来解一元二次方程,3、掌握配方法解一元二次方程的一般步骤,并注意每一步的易错点。4、配方法解一元二次方程的解题思想:“降次”由二次降为一次。 【拓展思考】你能解方程2x2-10x+52=0 吗?这个方程和我们本节课学的方程有什么区别,留作家庭作业,课后讨论 。【布置作业】教材45习题22.2第3题、第9题。【教学反思】教学过程不仅是知识传授的过程,也是师生在情感和理性上双向交流互动的过程。因此,建立良好的教学气氛,是提高教学质量的首要条件。所以在引入新课时,我利用比较简单的学生感兴趣的实际问题,揭示了列一元二次方程解应用题方法步骤。使学生在轻松愉悦的状态下掌握了规律和方法配方法解一元二次方程自评材料通过节课的教学,我发现:配方法不仅是解一元二次方程的方法之一,而且它还可作为其它许多数学问题的一种研究思想,其发挥的作用和意义十分重要。从学生的学习情况来看,效果普遍一般,且已基本掌握了这种数学方法,从本节课的具体教学过程来分析,我有以下几点体会和认识。 1、学生对这块知识的理解较好,在讲解时,我通过引例总结了配方法的具体步骤,即:化二次项系数为1;移常数项到方程右边;方程两边同时加上一次项系数一半的平方;化方程左边为完全平方式;(若方程右边为非负数)利用直接开平方法解得方程的根。如上让学生来掌握配方法,理解起来也很容易,然后再加以练习巩固。2、在讲解过程中,我提示学生,配方法是不是可以解决“任何一个”一元二次方程呢?若不能,如何来确定它的“适用范围”?多数学生迅速开动脑筋并发现“配方法”能简便解决一部分“特殊方程”。由此,我抓住这个契机向学生引申:解决一个问题的途径可能有多种思路,但为了提高学习效率,我们尽量选择一个简便易行的方案,这也是解决数学问题的一种必备思想。(这种说法也提示学生注意解一元二次方程每种方法的特点和适用环境)。3、当然在这一块知识的教学过程中,学生也出现了个别错误,表现在:二次项系数没有化为1就盲目配方;不能给方程“两边”同时配方;配方之后,右边是0,结果方程根书写成x-的形式(应为x1=x2=);所给方程的未知字母有时不是x,而是y、z、a、m等,但个别粗心甚至细心的同学在结果写方程根时字母都变成了x,对于以上错误,我在最后的知识小结中,又重点强调了配方法的一般步骤,并说明其中关键的一步是第步,必须依据等式的基本性质给方程两边同时加常数。4、对于基础较差的少数学生我只要求认真理解并巩固“配方法”;对于基础较好的同学根据他们的课堂反应,我还在知识拓宽方面加以提示:因为完全平方式的值定是非负数,故若在说明某一多项式是否为非负数时,可采用

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论