2010年第五届卡西欧杯全国高中青年教师优秀课观摩与评比活动教案-《独立性检验》.doc_第1页
2010年第五届卡西欧杯全国高中青年教师优秀课观摩与评比活动教案-《独立性检验》.doc_第2页
2010年第五届卡西欧杯全国高中青年教师优秀课观摩与评比活动教案-《独立性检验》.doc_第3页
2010年第五届卡西欧杯全国高中青年教师优秀课观摩与评比活动教案-《独立性检验》.doc_第4页
2010年第五届卡西欧杯全国高中青年教师优秀课观摩与评比活动教案-《独立性检验》.doc_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2010年第五届全国高中数学青年教师观摩与评比活动精品教案独立性检验的基本思想及其初步应用教学设计一、教学内容与内容解析1内容:独立性检验的基本思想及实施步骤2内容解析:本节课是人教A版(选修)23第三章第二单元第二课时的内容在本课之前,学生已经学习过事件的相互独立性、正态分布及回归分析的基本思想及初步应用。本节课利用独立性检验进一步分析两个分类变量之间是否有关系,是高中数学知识中体现统计思想的重要课节。在本节课的教学中,要把重点放在独立性检验的统计学原理上,理解独立性检验的基本思想,明确独立性检验的基本步骤。在独立性检验中,通过典型案例的研究,介绍了独立性检验的基本思想、方法和初步应用。独立性检验的基本思想和反证法类似,它们都是假设结论不成立,反证法是在假设结论不成立基础上推出矛盾从而证得结论成立,而独立性检验是在假设结论不成立基础上推出有利于结论成立的小概率事件发生,于是认为结论在很大程度上是成立的。因为小概率事件在一次试验中通常是不会发生的,所以有利于结论成立的小概率事件的发生为否定假设提供了有力的证据。学习独立性检验的目的是“通过典型案例介绍独立性检验的基本思想、方法及其初步应用,使学生认识统计方法在决策中的作用”。这是因为,随着现代信息技术飞速发展,信息传播速度快,人们每天都会接触到影响我们生活的统计方面信息,所以具备一些统计知识已经成为现代人应具备的一种数学素养。教学重点:理解独立性检验的基本思想及实施步骤二、教学目标与目标解析1目标:知识与技能目标通过生活中新闻案例的探究,理解独立性检验的基本思想,明确独立性检验的基本步骤,会对两个分类变量进行独立性检验,并能利用独立性检验的基本思想来解决实际问题。过程与方法目标通过探究“玩电脑游戏与注意力集中是否有关系”引出独立性检验的问题,借助样本数据的列联表分析独立性检验的实施步骤。利用上节课所学已经由数据直观判断出玩电脑游戏与注意力集中可能有关系。这一直觉来自于观测数据,即样本。问题是这种来自于样本的印象能够在多大程度上代表总体。这节课就是为了解决这个问题,在学生亲身体验感受的基础上,提高学生的数据分析能力。情感态度价值观目标通过本节课的学习,加强数学与现实生活的联系。以科学的态度评价两个分类变量有关系的可能性。培养学生运用所学知识,解决实际问题的能力。教学中适当地利用学生合作与交流,使学生在学习的同时,体会与他人合作的重要性。2目标解析:独立性检验是考察两个分类变量是否有关系,并且能较精确地给出这种判断的可靠程度的一种重要的统计方法利用独立性检验,能够帮助我们对日常生活中的实际问题作出合理的推断和预测因此,在学习中通过对统计案例的分析,理解和掌握独立性检验的方法,体会独立性检验的基本思想在解决实际问题的应用,以提高我们处理生活和工作中的某些问题的能力新课标指出:学生的数学学习内容应当是现实的、有趣的和富有挑战性的。从心理学的角度看,青少年有一种好奇的心态、探究的心理。因此,紧紧地抓住学生的这一特征,利用学生身边的问题“玩电脑游戏与注意力集中是否有关系”,设计教学情境,使学生在观察、讨论等活动中,逐步提高数据分析能力。三、教学问题诊断分析1本节课的内容独立性检验对学生来说是全新的内容,为什么有这么一个方法?为什么要学习这个方法?通过课前的新闻引入可以让学生体会到本节课知识的应用性。2独立性检验相当于建立一个判别“两个分类变量之间有关系”这一结论是否成立的规则,并且给出该规则把“两个分类变量之间没有有关系”错判成“两个分类变量之间有关系”的概率。所以首先要教会学生的是了解并初步理解这个规则,而后才是会用这个规则解决问题。3独立性检验难于理解的一个主要之处在于凭空出现一个,这个随机变量K2是怎样构造出来的,为什么如此构造?教材在这一部分处理上,是先进行某一临界值的讲解,而后再给出卡方临界值表,这对于学生是比较难于理解的,为什么就给出这么一个临界值呢?有这个问题的存在,学生对接下来所谈到的内容会有所怀疑,不一定十分认同。为了突破这个难点,我采用“先入为主”的思想,把教材后面介绍的卡方临界值表提前讲解,用概率知识解读临界值表的含义,让学生先接受统计学上的知识,而后在应用过程中进一步理解,这样进行调整后,学生对独立性检验的思想的接受就更容易一些。教学难点:了解独立性检验的基本思想; 了解随机变量K2的含义,K2的观测值很大,就认为两个分类变量是有关系的。四、教学支持条件为了有效实现教学目标,考虑到学生的知识水平和理解能力,从学生的认知规律出发,让学生自主学习,运用探究式法,充分调动学生的积极性,让学生逐步领会独立性检验的基本思想,掌握独立性检验的方法。五、教学过程设计创设情境,提出问题创设情境:最新研究发现,花太多时间玩电脑游戏的儿童,患多动症的风险会加倍。青少年的大脑会很快习惯闪烁的屏幕、变幻莫测的电脑游戏,一旦如此,他们在教室等视觉刺激较少的地方,就很难集中注意力。研究人员对1323名年龄在7岁到10岁的儿童进行调查,并在孩子父母的帮助下记录了他们在13个月里玩电脑游戏的习惯。同时,教师记下这些孩子出现的注意力不集中问题。统计获得下列数据: 注意力不集中注意力集中总计不玩电脑游戏268357625玩电脑游戏489209698总计7575661323根据这则网上收集到的新闻,利用上节课所学习的内容。提出问题:“从这则新闻中可以得出哪些结论?有多大把握认为你所得出结论正确?”预设回答:玩电脑游戏与注意力集中有关系。【设计意图】数学教学只有从问题开始才有其生命力,创设一个实际问题情境,既回顾了上节课的内容,又提出本节课研究的问题。同时使学生体会数学的应用价值,感受学习数学新知识的必要性学生在阅读完材料后就能回答出第一个问题,但对第二个问题就会没有解决的思路,这样可以让学生带着问题进入到下面的学习中,同时明确本节课的核心问题突出重点。探究归纳,解决问题启发探究引导性语言:有多大把握认为“两个分类变量有关系”,这是个概率问题。要研究两个分类变量有关系可以先研究其没有关系即是否独立,就是研究其独立的概率关系,在用频率代替概率后,假设H0:玩电脑游戏与注意力集中没有关系;用A表示不玩电脑游戏;用B表示注意力不集中;若H0成立事件A与事件B独立提出问题:在假设H0成立的条件下,能推导出a,b,c,d有怎样的关系?学生活动:利用列联表推导。预设回答:。【设计意图】要研究两个分类变量有关系是不容易解决的问题,本着“正难则反”的思想方法,借助反证法的思考模式,将问题转化为两个分类变量独立,利用事件独立的概率相关知识,用频率代替概率,利用列联表由学生自己动手推导出,在H0成立的条件下有,进而引出随机变量K2公式中的部分结构。新知解读引导性提问:通过上述推导得到,为表示其差异性,将其转化成,那么直观上的大小能说明什么?预设回答:值越小,越独立,两个分类变量关系越弱;值越大,越不独立,两个分类变量关系越强。引导性语言:为了使不同样本的数据有一个统一而又合理的评判标准,统计学家们经过研究后构造了一个随机变量=随机变量服从卡方分布,它类似我们前面学习过的正态分布。同时统计学家们还得到了如下的卡方临界值表:P(K2k0)0.500.400.250.150.100.050.0250.0100.0050.001k00.4550.7081.3232.0722.7063.8415.0246.6357.87910.828以k0=6.635为例,就是说在H0成立的条件下,计算出随机变量的观测值大于等于6.635的概率不超过0.01,也就是有99%的情况下其观测值是小于6.635的。【设计意图】随机变量的理解是本节课的难点之一,利用概率知识解读卡方临界值表中数据的含义,有助于学生理解独立性检验的基本思想。本环节我没有按照教材的呈现顺序,而是将卡方临界值表提到前面来讲解,这样改变后能使学生首先了解随机变量K2的含义,并能体会到如果K2的观测值很大,就认为两个分类变量是有关系的合理性,为后面引出独立性检验的规则做好铺垫。达到突破难点的目的。分组讨论提出问题:利用卡方临界值表和K2的观测值k判断:接受H0?认为玩电脑游戏和注意力集中没有关系;还是拒绝H0?认为玩电脑游戏和注意力集中有关系。学生活动:利用卡方临界值表和K2的观测值k进行小组讨论,选择他们认为正确的结论。【设计意图】让学生自己通过对卡方临界值概率的理解,亲身去体会是接受H0还是拒绝H0,实现教学重点,即理解独立性检验的基本思想。本环节设计为由学生先进行小组讨论,有些学生不会利用所学知识来分析问题,通过小组讨论,用集体的力量来进行知识的学习,能增强学生对独立性检验的了解,并体会到合作的有效作用。总结提升引导性语言:通过上面的学习过程,你能归纳独立性检验的一般步骤吗?预设回答:一般地,对于两个研究对象和,有两类取值,即类A和类B(如注意力集中与注意力不集中);也有两类取值,即类1和类2(如玩电脑游戏与不玩电脑游戏)。于是得到下列联表所示的抽样数据:类1类2总计类Aaba+b类Bcdc+d总计a+cb+da+b+c+d要推断“和有关系”,可按下面的步骤进行:1.提出假设H0:和没有关系;2.根据22列联表与公式计算K2的值;3.查对临界值,作出判断。【设计意图】让学生再次经历问题解决的过程,既深化对该统计思想的理解,又掌握应用独立性检验解决问题的步骤。成果展示,巩固提升引导性语言:课前各小组都收集了你们感兴趣的分类变量的相关数据,利用本节课我们所学的独立性检验进行判断,看各自有对大的把握认为它们有关系?学生活动:小组内进行检验,而后每小组由一名学生进行研究成果展示。【设计意图】各小组将各自收集的分类变量数据进行独立性检验,并将检验结果展示给全体同学,加深本组及其它各组学生对独立性检验思想的理解,体验数学在实际生活中的应用。同时用学生收集的分类变量数据做练习,更能提高学生的参与兴趣。小结引申,构建体系由学生谈本节课学习的收获,并对所学内容进行归纳。【设计意图】初步形成以科学的态度评价两个分类变量有关系的可能性。六、目标检测设计作业为教材第97页 习题3.2 第1、2题。【设计意图】通过作业进一步构建独立性检验的思想体系。新课标教材 人教A版数学2-3(选修) 第三章 统计案例独立性检验教学设计说明独立性检验的基本思想及其初步应用22列联表临界值问题背景分析统计量允许犯错误的概率的上界分类变量在“犯错误概率不超过”前提下,两分类变量有/无关观测值等高条形图分类变量间的关系独立性检验一、内容与内容解析独立性检验为新课标教材中新增加的内容.虽然本节是新增内容,理论比较复杂,教学时间也不长(1-2课时),但由于它贴近实际生活,在整个高中数学中,地位不可小视.在近几年各省新课标高考试题中,本节内容屡屡出现,而且多以解答题的形式呈现,其重要性可见一斑.该内容是前面学生在数学3(必修)中的统计知识的进一步应用,并与本册课本前面提到的事件的独立性一节关系紧密,此外还涉及到与数学2-2(选修)中讲到的“反证法”类似的思想.本小节的知识内容如右图。“独立性检验”是在考察两个分类变量之间是否具有相关性的背景下提出的,因此教材上首先提到了分类变量的概念,并给出了考察两个分类变量之间是否相关的一种简单的思路,即借助等高条形图的方法,随后引出相对更精确地解决办法独立性检验。独立性检验的思想,建立在统计思想、假设检验思想(小概率事件在一次试验中几乎不可能发生)等基础之上,通常按照如下步骤对数据进行处理:明确问题确定犯错误概率的上界及的临界值收集数据整理数据制列联表计算统计量的观测值比较观测值与临界值并给出结论. 本节的重点内容是通过实例让学生体会独立性检验的基本思想,掌握独立性检验的一般步骤.二、目标与目标解析本节课的教学目标是主要有:1.理解分类变量(也称属性变量或定性变量)的含义,体会两个分类变量之间可能具有相关性;2.通过对典型案例(吸烟和患肺癌有关吗?)的探究,了解独立性检验(只要求22列联表)的基本思想、方法、步骤及应用。3.鼓励学生体验用多种方法(等高条形图法与独立性检验法)解决同一问题,并对各种方法进行比较。4.让学生对统计方法有更深刻的认识,体会统计方法应用的广泛性,进一步体会科学的严谨性(如统计可能犯错误,原因可能是收集的数据样本容量小或样本采集不合理,也可能是理论上的漏洞,如在一次实验中,我们假设小概率事件不发生,这一点本身就值得质疑).其中第2条是重点目标,也是课程标准中明确指出的教学要求之一.三、教学问题诊断分析基于对学生已有数学水平的分析,在本节新学内容时,有以下几点是初学者不易理解或掌握的:1.的结构比较奇怪,来的也比较突然,学生可能会提出疑问.关于这个问题的处理,要首先利用好前面对“比例”或者两个分类变量“独立”的分析。借助两件事独立的定义以及样本容量较大时可以用频率近似表示概率,可以得到,考虑到近似造成的误差,未必恰好为0,但不会太大,于是这个值的平方占概率乘积的比例应该较小。由于四对事件的独立具有等价性,故加和之后应该很小,而将此式化简之后 即得的表达式(这个推导过程是我借鉴人教B版教材相应章节知识内容获悉的).另,由此可知越小说明两件事越“独立”,因此当它小于临界值时有利于说明二者独立,大于或等于临界值时,有利于说明二者相关.2.如何理解独立性检验的基本思想?这个问题需要和反证法做一个对比,学生可以通过完成表格(印在学案上)以对二者的基本思想作比较并加以区别。表格内容如下:反证法思想用于独立性检验的假设检验思想目标证明结论成立结果只有一种情况:结论成立判断分类变量X与Y之间是否有关结果有两种可能:有关或无关构造两种情况:结论成立 :结论的反面成立:X与Y之间无关(独立):X与Y之间有关理论依据矛盾双方不可能同时成立但是有且只有一个成立在一次试验中,小概率事件(观测值大于等于临界值)几乎是不可能发生的操作步骤1) 假设的反面成立2) 推导矛盾,从而不成立3) 由不成立说明成立1)确定置信水平,找到临界值2)提出原假设,并假设成立, 3)计算统计量的观测值4)通过比较与的大小给出结论:小则有利于成立,大有利于成立3.独立性检验的一般步骤是什么?由于教材一边解决问题,一边做讲解,因此结题思路显得有点散。然而细心提炼则不难总结出步骤,具体可大致分为4个阶段:提出原假设:两个分类变量独立(无关),备择假设:两个分类变量有关,并假设成立;确定允许犯错误的概率的上界,找到临界值;在下,计算的观测值;若,此时小概率事件发生,我们认为在一次试验中,小概率事件是不可能发生,所以假设出错,从而接受;若时,我们没有充分理由拒绝,也就没办法接受了.其中两个步骤属平级关系,可以调换次序.4.为什么在最后表达结论的时候要出现“在犯错误的概率不超过XX的前提下”这样的词.这也是初学者较难理解的问题,原因就在于独立性检验的过程中存在一个小小的漏洞,就是假设“在一次实验中,小概率事件不发生”,而事实上,小概率事件是可能发生的(用反证法,如果始终不发生,就是不可能事件了),而正是因为这一点点漏洞,导致独立性检验的结果可能是错误的,但是犯错误的概率不会太大,我们就把犯错误的最大概率等同于小概率事件发生的概率了。至于小概率事件所对应的临界值,则属于大学的研究范畴,在此不必做过多解释.四、教学特点与预期效果分析1. 教学特点 用学案辅助教学由于本节内容较散,理论部分较难,故需教师精心设计学案,提前发放给学生,以提高学生的预习效率. “问题串”

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论