




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
空间中的垂直关系 考向一直线与平面垂直的判定与性质【例1】在四棱锥PABCD中,底面ABCD为平行四边形,ADC45,ADAC1,O为AC的中点,PO平面ABCD.证明:AD平面PAC.【训练1】 如图,已知BD平面ABC,MC BD,ACBC,N是棱AB的中点求证:CNAD.考向二平面与平面垂直的判定与性质【例2】如图所示,在四棱锥PABCD中,平面PAD平面ABCD,ABDC,PAD是等边三角形,已知BD2AD8,AB2DC4.M是PC上的一点,证明:平面MBD平面PAD.【训练2】 如图所示,在长方体ABCDA1B1C1D1中,ABAD1,AA12,M是棱CC1的中点证明:平面ABM平面A1B1M.在三棱锥PABC中,平面PAB平面ABC,ABBC,APPB,求证:平面PAC平面PBC考向三 平行与垂直关系的综合应用【例3】如图,在四面体ABCD中,CBCD,ADBD,点E、F分别是AB、BD的中点求证:(1)直线EF平面ACD;(2)平面EFC平面BCD.【训练3】 如图,正方形ABCD和四边形ACEF所在的平面互相垂直,EFAC,AB,CEEF1.(1)求证:AF平面BDE;(2)求证:CF平面BDE. 考向四 平行与垂直关系的探究性问题【例4】四棱锥P-ABCD 的底面是矩形,PA平面 AC, 且有AD=2, AB= , 确定点M在线段 BC上什么位置时PM MD。 【训练4】 课后作业一、选择题:1已知m,n是两条不同直线,a ,b ,g 是三个不同平面,下列命题中正确的是( )(A)若ma ,na ,则mn(B)若ma ,na ,则mn(C)若a g ,b g ,则a b (D)若ma ,mb ,则a b 2已知直线m,n和平面a ,b ,且mn,ma ,a b ,则( )(A)nb (B)nb ,或nb (C)na (D)na ,或na 3设a,b是两条直线,a 、b 是两个平面,则ab的一个充分条件是( )(A)aa ,bb ,a b (B)aa ,bb ,a b (C)aa ,bb ,a b (D)aa ,bb ,a b 4设直线m与平面a 相交但不垂直,则下列说法中正确的是( )(A)在平面a 内有且只有一条直线与直线m垂直 (B)过直线m有且只有一个平面与平面a 垂直(C)与直线m垂直的直线不可能与平面a 平行 (D)与直线m平行的平面不可能与平面a 垂直5用a,b,c表示三条不同的直线,表示平面,给出下列命题:若ab,bc,则ac; 若ab,bc,则ac;若a,b,则ab; 若a,b,则ab. 其中真命题的序号是()A B C D6设a、b、c表示三条不同的直线,、表示两个不同的平面,则下列命题中不正确的是()A.c B.bc C.c D.b二、填空题:7在三棱锥PABC中,平面PAB平面ABC,PAPB,ABBC,BAC30,则PC_8如图,已知PA平面ABC,BCAC,则图中直角三角形的个数为_9在直四棱柱ABCDA1B1C1D1中,当底面ABCD满足条件_时,有A1CB1D1(只要求写出一种条件即可)10设a ,b 是两个不同的平面,m,n是平面a ,b 之外的两条不同直线,给出四个论断:mn a b nb ma 以其中三个论断作为条件,余下的一个论断作为结论,写出正确的一个命题_11已知平面a 平面b ,a b l,点Aa ,Al,直线ABl,直线ACl,直线ma ,mb ,给出下列四种位置:ABm;ACm;ABb ;ACb ,上述四种位置关系中,不一定成立的结论的序号是_3、 解答题:12如图,三棱锥PABC的三个侧面均为边长是1的等边三角形,M,N分别为PA,BC的中点()求MN的长;()求证:PABC13如图,在四面体ABCD中,CBCD,ADBD,且E、F分别是AB、BD的中点求证: ()直线EF平面ACD;()平面EFC平面BCD14平面ABEF平面ABCD,四边形ABEF与ABCD都是直角梯形,BADFAB90,BCAD,G,H分别为FA,FD的中点 ()证明:四边形BCHG是平行四边形;()C,D,F,E四点是否共面?为什么?()设ABBE,证明:平面ADE平面CDE15、 如图,在四棱锥PABCD中,平面PAD平面ABCD,ABAD,BAD60,E,F分别是AP,AD的中点求证:(1)直线EF平面PCD; (2)平面BEF平面PAD16、如图所示,在四棱锥PABCD中,底面ABCD是边长为a的正方形,E、F分别为PC、BD的中点,侧面PAD底面ABCD,且PAPDAD.(1)求证:EF平面PAD;(2)求证:平面PAB平面PCD.17,正三棱柱ABCA1B1C1中,E是AC的中点()求证:平面BEC1平面ACC1A1;()求证:AB1平面BEC118、 如图,在斜三棱柱
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年新能源汽车智能座舱健康管理功能研究报告:技术原理与应用场景
- 2025年氢燃料电池产业链供应链风险分析与应对策略报告
- 士兵体能考试题库及答案
- Unit 7 Lets clean up!说课稿-2023-2024学年小学英语二年级上册牛津译林版
- 2025年小学教材真题试卷及答案
- DB65T 4333-2020 羊黄曲霉毒素中毒防治技术规程
- 电力托管应急预案(3篇)
- 2025年能源行业智能电网智能化改造与能效提升优化报告
- 2025年接亲堵门问题题库及答案
- 出纳考试题库及答案政府
- 初中作文指导-景物描写(课件)
- 植物灰分的测定
- 实验室资质认证评审准则最新版本课件
- 浦发银行个人信用报告异议申请表
- 《横》书法教学课件
- 文件外发申请单
- 历史选择性必修1 国家制度与社会治理(思考点学思之窗问题探究)参考答案
- 中国医院质量安全管理 第2-29部分:患者服务临床营养 T∕CHAS 10-2-29-2020
- 人大附小诗词选修课:苏轼生平
- 回转支承选型计算
- 特色小吃加盟合同书
评论
0/150
提交评论