幅值裕量和相位裕量.doc_第1页
幅值裕量和相位裕量.doc_第2页
幅值裕量和相位裕量.doc_第3页
幅值裕量和相位裕量.doc_第4页
幅值裕量和相位裕量.doc_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一般来说,的轨迹越接近与包围-1+j0点,系统响应的震荡性越大。因此,的轨迹对点的靠近程度,可以用来度量稳定裕量(对条件稳定系统不适用)。在实际系统中常用相位裕量和增益裕量表示。Positive Gain MarginPositive Phase Margin-11Negative Gain MarginNegative Phase Margin-11Stable SystemUnstable System图1 稳定系统和不稳定系统的相位裕度和幅值裕度j相位裕度、相角裕度(Phase Margin)设系统的截止频率(Gain cross-over frequency)为定义相角裕度为相角裕度的含义是,对于闭环稳定系统,如果开环相频特性再滞后度,则系统将变为临界稳定。当 时,相位裕量相位裕度为正值;当时,相位裕度为负值。为了使最小相位系统稳定,相位裕度必须为正。在极坐标图上的临界点为0分贝和-180度。k增益裕度、幅值裕度(Gain Margin)设系统的穿越频率(Phase cross-over frequency),定义幅值裕度为幅值裕度的含义是,对于闭环稳定系统,如果系统开环幅频特性再增大倍,则系统将变为临界稳定状态。若以分贝表示,则有当增益裕度以分贝表示时,如果,则增益裕度为正值;如果,则增益裕度为负值。正增益裕度(以分贝表示)表示系统是稳定的;负增益裕度(以分贝表示)表示系统是不稳定的。对于稳定的最小相位系统,增益裕度指出了系统在不稳定之前,增益能够增大多少。对于不稳定系统,增益裕度指出了为使系统稳定,增益应当较少多少。一阶或二阶系统的增益裕度为无穷大,因为这类系统的极坐标图与负实轴不相交。因此,理论上一阶或二阶系统不可能是不稳定的。当然,一阶或二阶系统在一定意义上说只能是近似的,因为在推导系统方程时,忽略了一些小的时间滞后,因此它们不是真正的一阶或二阶系统。如果计及这些小的滞后,则所谓的一阶或二阶系统可能是不稳定的。关于相位裕度和增益裕度的几点说明 控制系统的相位裕度和增益裕度是系统的极坐标图对-1+j0点靠近程度的度量。因此,这两个裕度可以用来作为涉及准则。 只用增益裕度和相位裕度,都不足以说明系统的的相对稳定性。为了确定系统的相对稳定性,必须同时给出这两个量。 对于最小相位系统,只有当相位裕度和增益裕度都是正值时,系统才是稳定的。负的裕度表示系统不稳定。适当的相位裕度和增益裕度可以防止系统中元件变化造成的影响,并且指明了频率值。为了得到满意的性能,相位裕度应当在之间,增益裕度应当大于6分贝。例1已知一单位反馈系统的开环传递函数为。试求:K=1时系统的相位裕度和增益裕度。要求通过增益K的调整,使系统的增益裕度20logh=20dB,相位裕度。解: 即 在处的开环对数幅值为根据K=1时的开环传递函数,可以求出截止频率(Gain cross-over frequency)为 由题意知 验证是否满足相位裕度的要求。根据的要求,则得: 不难看出,就能同时满足相位裕度和增益裕度的要求。图2幅值裕度和相位裕度示意图例2 设一单位反馈系统对数幅频特性如图3所示(最小相位系统)。j写出系统的开环传递函数k判别系统的稳定性l如果系统是稳定的,则求时的稳态误差。图3最小相位系统的开环对数幅频特性解:j由图得 (近似计算)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论