


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
等比数列及其前n项和主标题:等比数列及其前n项和副标题:为学生详细的分析等比数列及其前n项和的高考考点、命题方向以及规律总结。关键词:等比数列,等比数列前n项和,等比数列的判断难度:3重要程度:5考点剖析:1理解等比数列的概念,掌握等比数列的通项公式及前n项和公式2能在具体的问题情境中识别数列的等比关系,并能用有关知识解决相应的问题3了解等比数列与指数函数的关系.命题方向:本部分在高考中常以选择题和填空题的形式出现,考查这两种数列的概念、基本性质、简单运算、通项公式、求和公式等,属于中档题;以解答题出现时,各省市的要求不太一样,有的考查等差、等比数列的通项公式与求和等知识,属于中档题;有的与函数、不等式、解析几何等知识结合考查,难度较大规律总结:1一个区别等差数列的首项和公差可以为零,且等差中项唯一;而等比数列首项和公比均不为零,等比中项可以有两个值如(1)中的“常数”,应为“同一非零常数”;(2)中,若b2ac,则不能推出a,b,c成等比数列,因为a,b,c为0时,不成立2两个防范一是在运用等比数列的前n项和公式时,必须注意对q1或q1分类讨论,防止因忽略q1这一特殊情形而导致解题失误,如(4)二是运用等比数列的性质时,注意条件的限制,如(6)中当q0时,ln an1ln anln q无意义.1等比数列的三种判定方法(1)定义:q(q是不为零的常数,nn*)an是等比数列(2)通项公式:ancqn1(c、q均是不为零的常数,nn*)an是等比数列(3)等比中项法:aanan2(anan1an20,nn*)an是等比数列2等比数列的常见性质(1)若mnpq2k(m,n,p,q,kn*),则amanapaqa;(2)若数列an、bn(项数相同)是等比数列,则an、a、anbn、(0)仍然是等比数列;(3)在等比数列an中,等距离取出若干项也构成一个等比数列,即an,ank,an2k,an3k,为等比数列,公比为qk;(4)公比不为1的等比数列an的前n项和为sn,则sn,s2nsn,s3ns2n仍成等比数列,其公比为qn,当公比为1时,sn,s2nsn,s3ns2n不一定构成等比数列3求解等比数列的基本量常用的思想方法(1)方程的思想:等比数列的通项公式、前n项和的公式中联系着五个量:a1,q,n,an,sn,已知其中三个量,可以通过解方程(组)求出另外两个量;其中基本量是a1与q,在解题中根据已知条件建立关于a1与q的方程或者方程组,是解题的关键(2)分类讨论思想:在应用等比数列前n项和公式时,必须分类求和,当q1时,snna1;当q1时,sn;在判断等比数列单调性时,也必须对a1与q分类讨论【知识梳理】1等比数列的有关概念(1)等比数列的定义如果一个数列从第2项起,每一项与它的前一项的比等于同一个非零常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q(q0)表示数学语言表达式:q(n2),q为常数(2)等比中项如果a,g,b成等比数列,那么g叫做a与b的等比中项即:g是a与b的等比中项a,g,b成等比数列g2ab.2等比数列的通项公式及前n项和公式(1)若等比数列an的首项为a1,公比是q,则其通项公式为ana1qn1;若等比数列an的第m项为am,公比是q,则其第n项an可以表示为anamqnm.(2)等比数列的前n项和公式:当q1时,snna1;当q1时,sn.3等比数列及前n项和的性质(1)若an为等比数列,且klmn(k,l,m,nn*),则akalaman.(2)相隔等距离的项组成的数列仍是等比数列,即ak,akm,ak2m,仍是等比数列,公比为qm.(3)当q1,或
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年潍坊寿光综合医院(原寿光市人民医院)招聘专业技术人员(23名)模拟试卷及完整答案详解
- 2025河南新乡市延津县审计局招聘辅助审计人员5人考前自测高频考点模拟试题完整参考答案详解
- 2025年三明永安市事业单位专门面向驻军随军家属公开招聘考前自测高频考点模拟试题及参考答案详解
- 2025年山东出版集团有限公司山东出版传媒股份有限公司招聘(192名)考前自测高频考点模拟试题及完整答案详解
- 2025甘肃定西市岷县人力资源和社会保障局招聘城镇公益性岗位人员11人考前自测高频考点模拟试题及完整答案详解
- 2025年福建省泉州市丰泽区部分公办学校专项公开编制内17人考前自测高频考点模拟试题及答案详解(夺冠系列)
- 2025年芜湖安徽工程大学博士专职辅导员招聘2人模拟试卷及答案详解(必刷)
- 体考数学考试题库及答案
- 地质勘查员考试题库及答案
- 临漳医疗招聘考试题库及答案
- 广东省省级政务信息化服务预算编制标准(运维服务分册)
- 2022版义务教育语文课程标准小学语文学习任务群解读的七个维度
- 妊娠合并先心病指南解读专家讲座
- 雅思考试简介与评分标准
- GB/T 9460-2008铜及铜合金焊丝
- 第7课+李さんは+每日+コーヒーを+飲みます+知识点课件【知识精讲+拓展提升+迁移训练】 高中日语新版标准日本语初级上册
- FZ/T 52023-2012高强高模聚乙烯醇超短纤维
- 智慧教育云平台建设解决方案
- 统编版《始终坚持以人民为中心》ppt精品课件1(共19张PPT)
- 2022年国家公务员考试申论真题及答案(地市级)
- 西方法律思想史教案课件
评论
0/150
提交评论