


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
二次函数图象性质【教学内容】二次函数图象性质(三)【教学目标】知识与技能会用描点法画出二次函数和ya (xh)2k的图象,并能指出图象的开口方向、对称轴及顶点坐标。过程与方法经历作图对比,了解y=ax2与ya (x-h)2和ya (xh)2k的图象之间平移关系, 明确其对称轴与顶点坐标的变化;情感、态度与价值观通过学习,体会数学知识由易到难的特点,激发数学学习信心。【教学重难点】重点:y=ax2与ya (x-h)2和的图象之间平移关系,对称轴、顶点坐标的变化。难点:分辨几种函数平移关系,识记它们对称轴和顶点坐标的变化。【导学过程】【知识回顾】填写下列表格1.yax2yax2k开口方向顶点对称轴有最高(低)点a0a0a0a0最值增减性【情景导入】在前面所学知识的基础上,本节我们将继续学习两种新的函数形式。【新知探究】探究一、在同一坐标系里画出函数y=2x2和y=2 (x1)2的图象,它们的开口方向、对称轴、顶点坐标分别是什么?它们的增减性是怎样的?它们的图象之间有何关系? 在同一坐标中画出y=2 (x+1)2的图象,说出它与y=2x2的图象之间的关系。归纳:y=2x2,y=2 (x1)2,y=2 (x+1)2的图象都是抛物线,并且形状相同,只是位置不同,它们的平移规律是怎样的?探究二、由二次函数y=2x2的图象,你能得到二次函数y=2x2一,y=2 (x+3)2,y=2 (x+3)2一的图象吗?画出y=2 (x+3)2一的图象,验证您的猜想。探究三:二次函数y=ax2与和ya (xh)2k的图象有什么关系?填写下表a0yax2yax2kya (x-h)2ya (xh)2k开口方向顶点对称轴最值增减性(对称轴右侧)【知识梳理】本节课我们学习了二次函数ya (x-h)2和ya (xh)2k的图象性质。【随堂练习】1.课堂练习 y3x2yx21y(x2)2y4 (x5)23开口方向顶点对称轴最值增减性(对称轴左侧)2.y6x23与y6 (x1)210_相同,而_不同.3.顶点坐标为(2,3),开口方向和大小与抛物线yx2相同的解析式为( )a.y(x2)23b.y(x2)23 c.y(x2)23d.y(x2)234.二次函数y(x1)22的最小值为_.5.将抛物线y5(x1)23先向左平移2个单位,再向下平移4个单位后,得到抛物线的解析式为_.6.若抛物线yax2k的顶点在直线y2上,且x1时,y3,求a.k的值.7.若抛物线ya (x1)2k上有一点a(3,5),则点a关于对称轴对称点a的坐标为_.81.开口方向顶点对称轴yx21y2 (x3)2y (x5)249.抛物线y3 (x4)21中,当x_时,y有最_值是_.10.足球守门员大脚开出去的球的高度随时间的变化而变化,这一过程可近似地用下列哪幅图表示( ) a b c d11.将抛物线y2 (x1)23向右平移1个单位,再向上平移3个单位,则所得抛
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年上海小学考试题及答案
- 2025年美术考试试题及答案
- 2025年超声中级诊断试题及答案
- 2025年慈利中选拔考试题及答案
- 社区零售业态创新与数字化社区服务满意度提升策略报告
- 2025年工业互联网平台数字签名技术在智能环境监测中的数据分析报告
- 校园入网协议书
- 校园讲座协议书
- 样品价格协议书
- 核心人才协议书
- YS/T 320-2014锌精矿
- GB/T 9123-2010钢制管法兰盖
- GB/T 28137-2011农药持久起泡性测定方法
- 青蓝工程师徒结对师傅总结9篇
- 09S304 卫生设备安装图集
- 解三角形专题 - (解析版)
- 农业行政处罚中违法所得实务分析课件
- 传染病疫情演练脚本
- 个人信用报告异议申请表
- 水玻璃有机酯自硬砂工艺简介
- MLPR-310Hb型微机线路保护装置用户手册V1.09.02电子版本
评论
0/150
提交评论