高考数学一轮复习 第八章 第2课时圆的方程课时作业 理 新人教版.doc_第1页
高考数学一轮复习 第八章 第2课时圆的方程课时作业 理 新人教版.doc_第2页
高考数学一轮复习 第八章 第2课时圆的方程课时作业 理 新人教版.doc_第3页
高考数学一轮复习 第八章 第2课时圆的方程课时作业 理 新人教版.doc_第4页
高考数学一轮复习 第八章 第2课时圆的方程课时作业 理 新人教版.doc_第5页
免费预览已结束,剩余2页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第2课时圆 的 方 程考纲索引1. 圆的方程.2. 与圆有关的最值问题.课标要求1. 掌握确定圆的几何要素,掌握圆的标准方程与一般方程.2. 初步了解用代数方法处理几何问题的思路.知识梳理1. 圆的定义平面内到的距离等于的点的轨迹是圆.2. 圆的标准方程(1)方程(x-a)2+(y-b)2=r2(r0)表示圆心为,半径为r的圆的标准方程.(2)特别地,以原点为圆心,半径为r(r0)的圆的标准方程为.3. 圆的一般方程(1)当d2+e2-4f0时,方程表示以为圆心,以为半径的圆;(2)当d2+e2-4f=0时,方程表示一个点;(3)当d2+e2-4f0)的位置关系(1)若(x0-a)2+(y0-b)2r2,则点p在圆外;(2)若(x0-a)2+(y0-b)2=r2,则点p在圆上;(3)若(x0-a)2+(y0-b)2r2,则点p在圆内.基础自测1. 圆心为点(0,1),半径为2,的圆的标准方程为().a. (x-1)2+y2=4b. x2+(y-1)2=2c. x2+(y-1)2=4d. (x-1)2+y2=22. 方程x2+y2+mx-2y+3=0表示圆,则m的范围是().3. 已知点a(1,-1),b(-1,1),则以线段ab为直径的圆的方程是().4. 过三点o(0,0),a(1,0),b(0,1)的圆的方程是.5. 圆心在c(8,-3),且经过点m(5,1)的圆的方程为.指 点 迷 津圆的方程中三个参数与三个独立条件标准方程中三个参数为a,b,r,一般方程中三个参数为d,e,f,都需要三个独立条件,来列出三个独立方程来待定参数.三个性质确定圆的方程时,常用到的圆的三个性质(1)圆心在过切点且与切线垂直的直线上;(2)圆心在任一弦的中垂线上;(3)两圆内切或外切时,切点与两圆圆心三点共线.一种互化圆的标准方程一般方程.考点透析考向一求圆的方程【审题视点】本题主要考查圆的方程,直线与圆的位置关系,点到直线的距离公式,基本不等式等.【方法总结】(1)直接法:根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程;(2)待定系数法:若已知条件与圆心(a,b)和半径r有关,则设圆的标准方程,依据已知条件列出关于a,b,r的方程组,从而求出a,b,r的值;若已知条件没有明确给出圆心或半径,则选择圆的一般方程,依据已知条件列出关于d,e,f的方程组,进而求出d,e,f的值.变式训练1. (2014内蒙古模拟)圆心在原点且与直线x+y-2=0相切的圆的方程为.考向二与圆有关的最值问题例2(2014重庆联考)一束光线从点a(-1,1)出发经x轴反射到圆c:(x-2)2+(y-3)2=1上的最短路程是().【审题视点】本题考查点与圆的位置关系,难度中等.【方法总结】解决反射光线与入射光线的问题,一般与对称性有关,利用反射光线与入射光线关于镜面对称求解.同时,求解圆外一点与圆上点的距离的最值,先求该点与圆心的距离,加半径得最大值,减半径得最小值.变式训练考向三与圆有关的轨迹问题例3已知圆c:(x-1)2+(y-1)2=9,过点a(2,3)作圆c的任意弦,求这些弦的中点p的轨迹方程.【审题视点】点a在圆内利用pc弦建立关系或者圆周角为直角的性质建立关系.【方法总结】求与圆有关的轨迹问题时,根据题设条件 不同常采用以下方法:直接法:直接根据题目提供的条件列出方程;定义法:根据圆、直线等定义列方程;几何法:利用圆与圆的几何性质列方程;代入法:找到要求点与已知点的关系,代入已知点满足的关系式等.变式训练3. 点p(4,-2)与圆x2+y2=4上任一点连线的中点的轨迹方程是().a. (x-2)2+(y+1)2=1 b. (x-2)2+(y+1)2=4 n c. (x+4)2+(y-2)2=4 d. (x+2)2+(y-1)2=1经典考题典例在平面直角坐标系xoy中,曲线y=x2-6x+1与坐标轴的交点都在圆c上.(1)求圆c的方程;(2)若圆c与直线x-y+a=0交于a,b两点,且oaob,求a的值.【解题指南】(1)可先求出曲线与坐标轴的交点坐标,再求

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论