



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
题目一:作一条线段等于已知线段。已知:如图,线段a .求作:线段AB,使AB = a .作法:(1) 作射线AP;(2) 在射线AP上截取AB=a .则线段AB就是所求作的图形。题目二:作已知线段的中点。已知:如图,线段MN.求作:点O,使MO=NO(即O是MN的中点).作法:()分别以M、N为圆心,大于的相同线段为半径画弧,两弧相交于P,Q;()连接PQ交MN于O则点O就是所求作的的中点。(试问:PQ与有何关系?)(怎样作线段的垂直平分线?)题目三:作已知角的角平分线。已知:如图,AOB,求作:射线OP, 使AOPBOP(即OP平分AOB)。作法:(1)以O为圆心,任意长度为半径画弧,分别交OA,OB于M,N;(2)分别以M、为圆心,大于的相同线段为半径画弧,两弧交AOB内于;(3) 作射线OP。则射线OP就是AOB的角平分线。题目四:作一个角等于已知角。(请自己写出“已知”“求作”并作出图形,不写作法)题目五:已知三边作三角形。已知:如图,线段a,b,c.求作:ABC,使AB = c,AC = b,BC = a.作法:(1) 作线段AB = c;(2) 以A为圆心b为半径作弧,以B为圆心a为半径作弧与前弧相交于C;(3) 连接AC,BC。则ABC就是所求作的三角形。题目六:已知两边及夹角作三角形。已知:如图,线段m,n, .求作:ABC,使A=,AB=m,AC=n.作法:(1) 作A=;(2) 在AB上截取AB=m ,AC=n;(3) 连接BC。则ABC就是所求作的三角形。题目七:已知两角及夹边作三角形。已知:如图,线段m .求作:ABC,使A=,B=,AB=m.作法:(1) 作线段AB=m;(2) 在AB的同旁作A=,作B=,A与B的另一边相交于C。则ABC就是所求作的图形(三角形)。三角形全等证明循序渐进训练(可改变条件练习)第一类:SSS1. 如图所示,已知:AB=DE,BC=EF,AC=DF. ABC与DEF全等吗?请说明理由.2. 如图所示,已知:AC=BD,BC=AD. ABC与BAD全等吗?请说明理由.3. 如图所示,已知:AB=DE,BC=EF,AF=DC. ABC与DEF全等吗?请说明理由.(请分别说出以上全等三角形的对应边,对应角.)第二类:SAS1. 如图所示,已知:AB=DE,BC=EF, B=E. ABC与DEF全等吗?请说明理由.2.如图所示,已知:AB=AD,AC=AE. ABC与ADE全等吗?请说明理由.4. 如图所示,已知:AO=CO,BO=DO,BOC=AOD. ABO与CDO全等吗?请说明理由.第三类:ASA与AAS1. 如图所示,已知:O是AC的中点, ABDC.ABO与CDO全等吗?请用ASA说明理由2. 如上图所示,已知:O是AC的中点, ABDC.ABO与CDO全等吗?请用AAS说明理由第四类:HL如图所示,已知:MOAB,MA=MB. MAO与MBO全等吗?O是AB的中点吗?请说明理由.综合练习1. 如图所示,已知:O是AC,BD的中点.AB与DC平行且相等吗?请说明理由2. 如图
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农职大的新质生产力
- 建筑设计中的新质生产力
- 初中学校庆祝教师节主题班会方案年
- 圆轴扭转横截面上的内力
- 2025年康复医学康复方案设计验收答案及解析
- 2025年感染性疾病防控院内感染防治模拟考试卷答案及解析
- 2025年肿瘤放疗后护理指导案例分析试卷答案及解析
- 2025年放射治疗技术操作规范模拟考试卷答案及解析
- 2025年全科医生每日一题模拟考试答案及解析
- 2025年影像学磁共振成像基本原理考核答案及解析
- 2025年秋季学期安全主题班会教育记录
- 火电厂安全员课件
- 2025年银行内部审计部门财务审计员竞聘考试指南
- Unit 1 A new start Starting out 课件(内嵌音视频)高一英语外研版必修第一册
- 树立正确就业观课件
- 口腔科终末处理流程与规范
- 钢管护栏拆除方案(3篇)
- 矮小症诊治指南
- 施工现场设备设施安全管理制度
- KTV娱乐场所营销策略
- 知识产权定价策略-洞察及研究
评论
0/150
提交评论