数学人教版七年级下册讲课稿.doc_第1页
数学人教版七年级下册讲课稿.doc_第2页
数学人教版七年级下册讲课稿.doc_第3页
数学人教版七年级下册讲课稿.doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

加减消元法讲课稿师:同学们,还记得代入消元法的核心思想是什么吗?生:消元。师:那代入消元法解二元一次方程组的步骤有哪些?生:表、代、解、写。师:谁愿意到黑板上来展示黑板上这两道题呢?请举手。好,你来,你来。生:(1) (2) 解:由得: 解:由得: 把代入得: 把代入得: 解这个方程得: 解这个方程得: 把代入得: 把代入得: 这个方程组的解为 这个方程组的解为师:好,哪一个小组来点评一下,这两个同学完成得怎么样?你来。生:我代表第三小组发言,这两个同学的解题格式完全正确,答案正确,完成得非常好,每个小组给5分。师:请坐,这个小组点评得非常好,我们给前面两组每组5分,点评的小组2分怎么样?生:好。师:那么,同学们仔细观察黑板上的解题步骤,思考我们在消元的时候计算简单吗?能不能找到其他更简单的方法进行消元呢?师:小组互相交流,互相学习,待会请人展示他们小组的讨论结果。(小组探讨,教师巡视)师:好了,哪个小组最积极请举手,好,你们小组来。生:我代表第七小组发言,我们小组认为这两道题在消元过程中由于未知数项系数的绝对值都不为1,涉及到加减法和乘除法,消元过程很复杂,不是最简单的消元方法。通过预习,我们小组发现,这两道题如果用加减消元法,在消元过程中只需要一步加减法就可以达到消元的目的。所以加减消元法更简单。师:请坐,这个小组回答得非常好,给他们小组加上满分5分。刚刚这个小组提到加减消元法更简单,那么什么是加减消元法呢?请大家自学教材94-95页,完成导学案自学检测部分习题。生:开始自学,教师巡视,个别指导。师:请一小组和五小组的同学分别展示自学检测的两道题。生:展示如下完成下面解题过程:(1) (2)解:-,得 解:+,得 解这个方程,得 =6 解这个方程,得 =2 把 =6 代入 把 =2 代入 得 解得 = 得 解得 这个方程组的解为 这个方程组的解为师:在刚刚的两道题中涉及到了两个方程相加相加,请问具体该怎么加减呢?生:可化为 左左=右右。师:有的题用加法,有的题用减法,我们什么时候要用加法,什么时候用减法呢?生:先消去的未知数的系数相反时用加法,相同时用减法。师:如果系数不满足相反或相等该怎么办?小组互相交流,待会儿我希望听见满意的答案。生:好。师:哪一小组已经统一了答案?请第四组的同学发言。生:我代表第四小组发言。两个方程中先消去的未知数必须满足两个方程中同一个未知数的系数相同或相反,如果不满足这个条件,应该怎么做 利用等式性质对方程进行变形,使得两个方程中同一未知数的系数相同或相反 。师:请同学们根据方法完成尝试练习,小组交流统一答案。生:我代表第六小组发言。 例:用加减消元法解方程组: 解:3,得 2,得 +,得 解得 把 代入,得 解得 这个方程组的解为师:非常棒,给六小组加几分?生:5分!师:大家要注意,等式乘以一个数,是等式两边分别乘以这个数。师:通过刚刚的这几道题,你们能不能总结出加减消元法解二元一次方程组的步骤呢?小组同学互相探讨解题步骤。生:我代表第一小组发言。加减消元法解二元一次方程组的步骤:1、 化(提示:化系数):运用等式性质,使其中某一个未知数项的系数的绝对值相等。2、 消(提示:加或减):把变形后的两个方程相加或相减,以消去一个未知数。3、 解(提示:一元一次方程):解消元后的一元一次方程,求出其中一个未知数的值。4、 代(提示:求另一个未知数):把这个未知数的值代入方程组中某一个方程,求另一个未知数的值。5、 写(提示:解的形式):把两个未知数的值用“”合写在一起。师:同学们的总结能力都非常强,继续加油。接下来请同学们独立完成当堂检测,请四位同学到黑板上展示。 (展示时间)师:拓展提升下去自己完成,这里给大家提示一下:方法不止一种:可以用表示、,建立关于的一元一次方程。 可以用表示,把原方程组转化为关于和的二元一次方程组。 可以先消去,建立关于、的二元一次方程组,求解、,再求。师:同学们,我们一起来回忆一下这节课我们学习了什么?生:加减消元法。师:那什么是加减消元法呢?生:当二元一次方程组的两个方程中同一未知数的系数相反或相等时,把两个方程的两边分别相加或相减,就能消去这个未

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论