




已阅读5页,还剩44页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高等代数cai课件张禾瑞郝炳新编 第四版 第一章基本概念第二章多项式第三章行列式第四章线性方程组第五章矩阵 第六章向量空间第七章线性变换第八章欧氏空间第九章二次型 广东教育学院数学系代数与几何教研室 何谓高等代数 大家知道 初等代数是研究数及代表数的文字的代数运算 加法 减法 乘法 除法 乘方 开方 的理论和方法 也就是研究多项式 实系数与复系数 的代数运算的理论和方法 而多项式方程及多项式方程组的解 包括解的公式和数值解 的求法及其分布的研究恰为初等代数研究的中心问题 以这个中心问题为基础发展起来的一般数域上的多项式理论与线性代数理论就是所谓的高等代数 本课程的意义 内容及学习要求 高等代数是大学数学中的一门重要基础课程 从内容上看 它是中学代数里有关内容的继续和提高 其中许多理论对于加深中学数学教材的理解有着直接的指导意义 因此作为一个合格的中学数学教师 学好这门课程是非常必要的 此外 高等代数的思想和方法已经渗透到数学的各个领域 在数学分析 几何 计算技术等学科有广泛的应用 所以 学好这门课程也有助于学好其它数学课程 并且高代是考研的一门必考课程 第一章基本概念 第一节集合第二节映射第三节数学归纳法第四节整数的一些整除性质第五节数环和数域 第一节集合及映射 章节名称 集合及映射教学目的与要求 了解集合的概念和表示 运算 理解并掌握映射的定义 合成 单射满射等的定义 掌握双射的等价刻画重点 证明映射是单射 满射的方法 一 集合 把一些事物汇集到一起组成的一个整体就叫做集合 常用大写字母a b c等表示集合 当a是集合a的元素时 就说a属于a 记作 当a不是集合a的元素时 就说a不属于a 记作 1 概念 组成集合的这些事物称为集合的元素 用小写字母a b c等表示集合的元素 关于集合没有一个严谨的数学定义 只是有一个描述性的说明 集合论的创始人是19世纪中期德国数学家康托尔 g cantor 他把集合描述为 所谓集合是指我们直觉中或思维中确定的 彼此有明确区别的那些事物作为一个整体来考虑的结果 集合中的那些事物就称为集合的元素 即 集合中的元素具有 确定性 互异性 无序性 remark 集合的表示方法 描述法 给出这个集合的元素所具有的特征性质 列举法 把构成集合的全部元素一一列举出来 例1 例3 m x x具有性质p m a1 a2 an 2 集合间的关系 如果b中的每一个元素都是a中的元素 则称b是a的子集 记作 读作b包含于a 当且仅当 空集 不含任何元素的集合 记为 注意 空集是任意集合的子集 如果a b两集合含有完全相同的元素 则称a与b相等 记作a b a b当且仅当且 3 集合间的运算 交 并 显然有 1 证明等式 证 显然 又 从而 例题 故等式成立 因此无论哪一种情况 都有 此即 但是 二 映射 设m m 是给定的两个非空集合 如果有一个对 应法则 通过这个法则 对于m中的每一个元素a 都有m 中一个唯一确定的元素a 与它对应 则称 为 称a 为a在映射 下的象 而a 称为a在映射 下的 m到m 的一个映射 记作 或 原象 记作 a a 或 1 定义 设映射 集合 称之为m在映射 下的象 通常记作im 集合m到m自身的映射称为m的一个变换 显然 注 例4判断下列m到m 对应法则是否为映射 1 m a b c m 1 2 3 4 a 1 b 1 c 2 a 1 b 2 c 3 c 4 b 2 c 4 不是 是 不是 2 m z m z n n n n 1 不是 是 a a0 4 m p m p为数域 a ae e为n级单位矩阵 5 m m 为任意两个非空集合 a0是m 中的一个固定元素 是 是 6 m m p x p为数域 f x f x 是 3 m m p p为数域 a a 是 例5m是一个集合 定义i i a a 即i把m上的元素映到它自身 i是一个映射 都是实数集r到自身的映射 即 函数可以看成是 称i为m上的恒等映射或单位映射 映射的一个特殊情形 2 映射的乘积 即相继施行 和 的结果 是m到m 的一个 映射 对于任意映射 有 有 注 3 映射的性质 设映射 或称 为映上的 2 若m中不同元素的象也不同 即 则称 是m到m 的一个单射 或称 为1 1的 3 若 既是单射 又是满射 则称 为双射 使 则称 是m到m 的一个满射 或称 为1 1对应 例7判断下列映射的性质 1 m a b c m 1 2 3 a 1 b 1 c 2 既不单射 也不是满射 a 3 b 2 c 1 2 m z m z n n 1 是满射 但不是单射 a a 是满射 但不是单射 双射 a ae 是单射 但不是满射 a a0 既不单射 也不是满射 6 m m p x p为数域 f x f x 是满射 但不是单射 7 m是一个集合 定义i i a a 8 m z m 2z n 2n 双射 双射 5 m m 为任意非空集合 为固定元素 对于有限集来说 两集合之间存在1 1对应的充要条件是它们所含元素的个数相同 对于有限集a及其子集b 若b a 即b为a的真子集 则a b之间不可能存在1 1对应 但是对于无限集未必如此 注 如例7中的8 是1 1对应 但2z是z的真子集 4 可逆映射 使得 则称 为可逆映射 为 的逆映射 若 为可逆映射 则 1也为可逆映射 且 1 1 注 的逆映射是由 唯一确定的 记作 1 为可逆映射的充要条件是 为1 1对应 即 为可逆映射 则 是一个m 到m的映射 且对 即 所以 为满射 即 为单射 所以 为1 1对应 反之 设为可逆映射 则 练习 找一个r到r 的1 1对应 则是r到r 的一个映射 故是1 1对应 1 g是不是r 到r 的双射 g是不是f的逆映射 2 g是不是可逆映射 若是的话 求其逆 解 1 g是r 到自身的双射 若 则 g是单射 并且 即g是满射 又 g不是f的逆映射 事实上 2 g是可逆映射 1 如果h是单射 那么f也是单射 2 如果h是满射 那么g也是满射 3 如果f g都是双射 那么h也是双射 并且 这与h是单射矛盾 f是单射 证 1 若f不是单射 则存在 于是有 3 因为g是满射 存在 使 又因为f是满射 存在 使 h是满射 又因为g是单射 有 即 因而h是双射 h是单射 1 3数学归纳法 内容分布1 3 1最小数原理1 3 2数学归纳法的依据教学目的掌握映射的概念 映射的合成 满射 单射 可逆映射的判断 重点 难点映射的合成 满射 单射 可逆映射的判断 1 3 1最小数原理 数学归纳法所根据的原理是正整数集的一个最基本的性质 最小数原理 1 最小数原理并不是对于任意数集都成立的 2 设c是任意一个整数 令 注意 那么经代替正整数集 最小数原理对于仍然成立 也就是说 的任意一个非空子集必含有一个最小数 特别 n的任意一个非空了集必含有一个最小数 这个原理的一般形式就是数学分析中的下 上 确界原理 1 3 2数学归纳法的依据 定理1 3 1 数学归纳法原理 设有一个与正整数n有关的命题 如果 当n 1时 命题成立 假设当n k时命题成立 当n k 1时命题也成立 那么这个命题对于一切正整数n都成立 例1证明 当时 n边形的内角和等于 n 2 定理1 3 2 第二数学归纳法 设有一个与正整数n有关的命题 如果 当n 1时命题成立 假设命题对于一切小于k的自然数来说成立 则命题对于k也成立 那么命题对于一切自然数n来说都成立 数学归纳法可以推广到良序集合上 即所谓超限归纳原理 1 4整数的一些整除性质 一 内容分布1 4 1整除与带余除法1 4 2最大公因数1 4 3互素1 4 4素数的简单性质二 教学目的1 理解和掌握整除及其性质 2 掌握最大公因数性质 求法 3 理解互素 素数的简单性质 三 重点 难点整除 最大公因数性质 互素有关的证明 1 4 1整除与带余除法 设a b是两个整数 如果存在一个整数d 使得b ad 那么就说a整除b 或者说b被a整除 用符号a b表示a整除b 这时a叫做b的一个因数 而b叫做a的一个倍数 如果a不整除b 那么就记作 整除的基本性质 定理1 4 1 带余除法 设a b是整数且 那么存在一对整数q和r 使得 满足以上条件整数q和r的唯一确定的 所以 这是与r是s中最小数的事实矛盾 因此 假设还 使得 由此或者 或者 不论是哪一种情形 都将导致矛盾 这样必须 从而 也就是说 1 4 2最大公因数 设a b是两个整数 满足下列条件的整数d叫做a与b的最大公因数 定理1 4 2任意个整数都有最大公因数 如果d是的一个最大公因数 那么 d也是一个最大公因数 的两个最大公因数至多只相差一个符号 定理1 4 3设d是的一个最大公因数 那么存在整数 使得 证若 那么d 0 定理显然成立 设不全为零 由定理1 4 2的证明 知 因而存在 使得 1 4 3互素 设a b是两个整数 如果 a b 1 那么就说a与b互素 一般地 是n个整数 如果 那么就说这n个整数互素 1 证如果互素 那么由定理1 4 2立即得到等式 1 成立 反过来 设等式 1 成立 令 那么c能整除 1 式中的左端 所以c 1 因此c 1 即 1 4 4素数的简单性质 一个正整数p 1叫做一个素数 如果除 1和 p外 没有其它因数 定理1 4 5一个素数如果带队两个整数a与b的乘积 那么它至少整除a与b中的一个 证设p是一个素数 如果p ab 但 由上面所指出的素数的性质 必定有 p a 1 于是由定理1 4 4 存在整数s和t使得sp ta 1两边同乘以b spb tab b 左边的第一项自然能被p整除 又因为p ab 所以左边第二项也能被p整除 于是p整除左边两项的和 从而p b 1 5数环和数域 定义1设s是复数集c的一个非空子集 如果对于s中任意两个数a b来说 a b a b ab都在s内 那么就称s是一个数环 例2令
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 辽宁省东港市2026届化学九年级第一学期期中质量跟踪监视模拟试题含解析
- 监狱护栏网施工方案
- 唐山市重点中学2026届九年级化学第一学期期中达标检测试题含解析
- 2026届陕西省西安高新一中学英语九年级第一学期期末联考试题含解析
- 2026届内蒙古伊金霍洛旗化学九年级第一学期期中综合测试试题含解析
- 2026届辽宁省大石桥市水源镇九一贯制学校九年级化学第一学期期中经典试题含解析
- 农民果园承包经营合同书5篇
- 2026届辽宁省丹东二十九中学九上化学期中质量检测模拟试题含解析
- 工业园区租赁合同终止及环保措施协议
- 离婚协议书起草与婚姻关系解除纠纷解决合同
- 《证券投资学》全套教学课件
- 小学英语教学评一体化
- 函数图像 课件-2025届高三数学一轮复习
- 专题05 《红星照耀中国》试题50题中考语文名著阅读试题50题
- 2022年安徽省体育彩票管理中心招聘考试试题及答案
- 沪科黔科版综合实践活动四年级上册全册教学设计教案
- 追觅入职测评题库
- 运输公司车辆安全检查表
- 煤矿井下掘进培训课件
- 湘科版五年级科学上册全册教案教学设计
- 预防员工犯罪
评论
0/150
提交评论