




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2 4 1求函数零点近似解的一种计算方法 二分法课件 1 函数的零点的定义 使f x 0的实数x叫做函数y f x 的零点 复习 2 零点存在性判定法则 复习 问题1 能否求解以下几个方程 1 x2 2x 1 0 2 2x 4 x 3 x3 3x 1 0 指出 用配方法可求得方程x2 2x 1 0的解 但此法不能运用于解另外两个方程 探索新授 由图可知 方程x2 2x 1 0的一个根x1在区间 2 3 内 另一个根x2在区间 1 0 内 画出y x2 2x 1的图象 如图 结论 借助函数f x x2 2x 1的图象 我们发现f 2 10 这表明此函数图象在区间 2 3 上穿过x轴一次 可得出方程在区间 2 3 上有惟一解 问题2 不解方程 如何求方程x2 2x 1 0的一个正的近似解 精确到0 1 思考 如何进一步有效缩小根所在的区间 由于2 375与2 4375的近似值都为2 4 停止操作 所求近似解为2 4 数离形时少直观 形离数时难入微 由于2 375与2 4375的近似值都为2 4 停止操作 所求近似解为2 4 1 简述上述求方程近似解的过程 f 2 5 0 25 0 f 2 25 0 4375 0 f 2 375 0 2351 0 f 2 4375 0 105 0 通过自己的语言表达 有助于对概念 方法的理解 2 375与2 4375的近似值都是2 4 x1 2 4 解 设f x x2 2x 1 x1为其正的零点 对于在区间 a b 上连续不断 且f a f b 0的函数y f x 通过不断地把函数f x 的零点所在的区间一分为二 使区间的两端点逐步逼近零点 进而得到零点 或对应方程的根 近似解的方法叫做二分法 问题4 二分法实质是什么 用二分法求方程的近似解 实质上就是通过 取中点 的方法 运用 逼近 思想逐步缩小零点所在的区间 问题3 如何描述二分法 例题 利用计算器 求方程2x 4 x的近似解 精确到0 1 怎样找到它的解所在的区间呢 在同一坐标系内画函数y 2x与y 4 x的图象 如图 能否不画图确定根所在的区间 方程有一个解x0 0 4 如果画得很准确 可得x0 1 2 数学运用 应用数学 解 设函数f x 2x x 4 则f x 在r上是增函数 f 0 30 f x 在 0 2 内有惟一零点 方程2x x 4 0在 0 2 内有惟一解x0 由f 1 10得 x0 1 2 由f 1 5 0 33 0 f 1 1 0得 x0 1 1 5 由f 1 25 0 370得 x0 1 25 1 5 由f 1 375 0 0310得 x0 1 375 1 5 由f 1 4375 0 146 0 f 1 375 0得 x0 1 375 1 4375 1 375与1 4375的近似值都是1 4 x0 1 4 问题5 能否给出二分法求解方程f x 0 或g x h x 近似解的基本步骤 1 利用y f x 的图象 或函数赋值法 即验证f a f b 0 判断近似解所在的区间 a b 2 二分 解所在的区间 即取区间 a b 的中点 3 计算f x1 1 若f x1 0 则x0 x1 2 若f a f x1 0 则令b x1 此时x0 a x1 3 若f a f x1 0 则令a x1 此时x0 x1 b 4 判断是否达到给定的精确度 若达到 则得出近似解 若未达到 则重复步骤2 4 练习1 求方程x3 3x 1 0的一个近似解 精确到0 01 画y x3 3x 1的图象比较困难 变形为x3 1 3x 画两个函数的图象如何 有惟一解x0 0 1 练习2 下列函数的图象与x轴均有交点 其中不能用二分法求其零点的是 c 问题5 根据练习2 请思考利用二分法求函数零点的条件是什么 1 函数y f x 在 a b 上连续不断 2 y f x 满足f a f b 0 则在 a b 内必有零点 思考题从上海到美国旧金山的海底电缆有15个接点 现在某接点发生故障 需及时修理 为了尽快断定故障发生点 一般至少需要检查几个接点 回顾反思 理解数学 课堂小结 1 理解二分法是一种求方程近似解的常用方法 2 能借助计算机 器
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 国学文化深度解析测试题及答案指南
- 七年级地理下册 第七章 了解地区 第二节 南亚说课稿设计(新版)湘教版
- DTNL课件资源教学课件
- DTI课件语音教学课件
- 第8课 让我们荡起双桨说课稿小学美术赣美版三年级上册-赣美版
- DRG基础知识培训课件
- 四年级上美术教学设计-可爱的班集体-湘美版(2014秋)
- 2025年护理心理的题库及答案
- 人教部编版七年级历史上册第3课远古的传说说课稿
- 9.1美国 第1课时 说课稿2025-2026学年人教版地理七年级下册
- 高血压糖尿病健康管理督导记录表
- 《医疗机构基本标准(试行)》2018年版
- 医院检验标本采集与运送
- 秋冬季猪的饲养管理课件(模板)
- 新能源汽车技术全套ppt
- 2022年8月20日云南省省直机关遴选笔试真题及答案解析
- 现代医学实验动物科学和比较医学研究
- SOP标准作业指导书样板
- 云南省地图含市县地图矢量分层地图行政区划市县概况ppt模板
- GB/T 41843-2022功能、残疾、健康分类的康复组合评定
- 压花艺术课件
评论
0/150
提交评论