2017_18学年高中数学第二章质量评估检测新人教选修.docx_第1页
2017_18学年高中数学第二章质量评估检测新人教选修.docx_第2页
2017_18学年高中数学第二章质量评估检测新人教选修.docx_第3页
2017_18学年高中数学第二章质量评估检测新人教选修.docx_第4页
2017_18学年高中数学第二章质量评估检测新人教选修.docx_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第二章圆锥曲线与方程质量评估检测时间:120分钟满分:150分一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的1已知抛物线的方程为y2ax2,且过点(1,4),则焦点坐标为()AB C(1,0) D(0,1)解析:抛物线过点(1,4),42a,a2,抛物线方程为x2y,焦点坐标为.答案:A2已知0,则双曲线C1:1与C2:1的()A实轴长相等 B虚轴长相等C离心率相等 D焦距相等解析:先确定实半轴和虚半轴的长,再求出半焦距双曲线C1和C2的实半轴长分别是sin和cos,虚半轴长分别是cos和sin,则半焦距c都等于1,故选D.答案:D3中心在原点,焦点在x轴上的双曲线的一条渐近线经过点(4,2),则它的离心率为()A. B.C. D.解析:设双曲线的标准方程为1(a0,b0),所以其渐近线方程为yx,因为点(4,2)在渐近线上,所以,根据c2a2b2,可得,解得e2,e.答案:D4若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,焦距为6,则椭圆的方程为()A.1 B.1 C.1或1 D.1解析:2c6,c3,2a2b18,a2b2c2,椭圆方程为1或1.答案:C5已知双曲线x21的左顶点为A1,右焦点为F2,P为双曲线右支上一点,则的最小值为()A1 B0 C2 D解析:设点P(x0,y0),则x1,由题意得A1(1,0),F2(2,0),则(1x0,y0)(2x0,y0)xx02y,由双曲线方程得y3(x1),故4xx05(x01),可得当x01时,有最小值2,故选C.答案:C6已知F是抛物线yx2的焦点,P是该抛物线上的动点,则线段PF中点的轨迹方程是()Ax22y1 Bx22yCx2y Dx22y2解析:设P(x0,y0),PF的中点为(x,y),则y0x,又F(0,1),代入y0x得2y1(2x)2,化简得x22y1,故选A.答案:A7抛物线y24x的焦点到双曲线x21的渐近线的距离是()A. B. C1 D.解析:由已知解出抛物线的焦点坐标和双曲线的渐近线方程,利用点到直线的距离公式求解由题意可得抛物线的焦点坐标为(1,0),双曲线的渐近线方程为xy0或xy0,则焦点到渐近线的距离d1或d2.答案:B8直线yxb与抛物线x22y交于A、B两点,O为坐标原点,且OAOB,则b()A2 B2C1 D1解析:设A(x1,y1),B(x2,y2),联立方程组消去y,得x22x2b0,所以x1x22,x1x22b,y1y2(x1b)(x2b)x1x2b(x1x2)b2b2,又OAOB,x1x2y1y20,即b22b0,解得b0(舍)或b2.答案:A9已知双曲线1(a0,b0)的一条渐近线方程是yx,它的一个焦点在抛物线y224x的准线上,则双曲线的方程为()A.1 B.1C.1 D.1解析:因为双曲线1(a0,b0)的一个焦点在抛物线y224x的准线上,所以F(6,0)是双曲线的左焦点,即a2b236,又双曲线的一条渐近线方程是yx,所以,解得a29,b227,所以双曲线的方程为1,故选B.答案:B10若动圆圆心在抛物线y28x上,且动圆恒与直线x20相切,则动圆必过定点()A(4,0) B(2,0)C(0,2) D(0,2)解析:抛物线y28x上的点到准线x20的距离与到焦点(2,0)的距离相等,故动圆必过焦点(2,0)答案:B11设圆锥曲线的两个焦点分别为F1,F2.若曲线上存在点P满足|PF1|F1F2|PF2|432,则曲线的离心率等于()A.或 B.或2 C.或2 D.或解析:设圆锥曲线的离心率为e,由|PF1|F1F2|PF2|432,知若圆锥曲线为椭圆,由椭圆的定义,则有e;若圆锥曲线为双曲线,由双曲线的定义,则有e.综上,所求的离心率为或.故选A.答案:A12已知椭圆C;1(ab0)的离心率为.双曲线x2y21的渐近线与椭圆C有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C的方程为()A.1 B.1 C.1 D.1解析:利用椭圆离心率的概念和双曲线渐近线求法求解椭圆的离心率为,a2b.椭圆方程为x24y24b2.双曲线x2y21的渐近线方程为xy0,渐近线xy0与椭圆x24y24b2在第一象限的交点为,由圆锥曲线的对称性得四边形在第一象限部分的面积为bb4,b25,a24b220.椭圆C的方程为1.答案:D二、填空题:本大题共4小题,每小题5分,共20分13已知椭圆C:1的左、右焦点分别为F1,F2,P是椭圆上一点,且满足|PF2|F1F2|,则PF1F2的面积等于_解析:由1知,a5,b4,c3,即F1(3,0),F2(3,0),|PF2|F1F2|6.又由椭圆的定义,知|PF1|PF2|10,|PF1|1064,于是SPF1F2|PF1|h48.答案:814抛物线x22py(p0)的焦点为F,其准线与双曲线1相交于A,B两点,若ABF为等边三角形,则p_.解析:根据抛物线与双曲线的图象特征求解由于x22py(p0)的准线为y,由解得准线与双曲线x2y23的交点为A,B,所以|AB|2.由ABF为等边三角形,得|AB|p,解得p6.答案:615设椭圆的两个焦点分别为F1,F2,过F2作椭圆长轴的垂线交椭圆于点P,若F1PF2为等腰直角三角形,则椭圆的离心率为_解析:设椭圆的方程为1(ab0),F2的坐标为(c,0),P点坐标为,由题意知|PF2|F1F2|,所以2c,a2c22ac,2210,解得1,负值舍去答案:116已知双曲线C:1,给出以下4个命题,真命题的序号是_直线yx1与双曲线有两个交点;双曲线C与1有相同的渐近线;双曲线C的焦点到一条渐近线的距离为3.解析:错误,因为直线yx1与渐近线yx平行,与双曲线只有一个交点;正确,渐近线方程为yx;正确,右焦点为(,0)到渐近线yx的距离为3.答案:三、解答题:本大题共6小题,共70分,解答时应写出必要的文字说明,证明过程或演算步骤17(本小题满分10分)求与椭圆1有公共焦点,并且离心率为的双曲线方程解析:由椭圆方程为1,知长半轴长a13,短半轴长b12,焦距的一半c1,焦点是F1(,0),F2(,0),因此双曲线的焦点也是F1(,0),F2(,0),设双曲线方程为1(a0,b0),由题设条件及双曲线的性质,得解得故所求双曲线的方程为y21.18(本小题满分12分)已知动圆C过定点F(0,1),且与直线l:y1相切,圆心C的轨迹为E.(1)求动点C的轨迹方程;(2)已知直线l2交轨迹E于两点P,Q,且PQ中点的纵坐标为2,则|PQ|的最大值为多少?解析:(1)由题设点C到点F的距离等于它到l1的距离,点C的轨迹是以F为焦点,l1为准线的抛物线,所求轨迹的方程为x24y.(2)由题意易知直线l2的斜率存在,又抛物线方程为x24y,当直线AB斜率为0时|PQ|4.当直线AB斜率k不为0时,设中点坐标为(t,2),P(x1,y1),Q(x2,y2),则有x4y1,x4y2,两式作差得xx4(y1y2),即得k,则直线方程为y2(xt),与x24y联立得x22tx2t280.由根与系数的关系得x1x22t,x1x22t28,|PQ|6,即|PQ|的最大值为6.19(本小题满分12分)已知双曲线的焦点在x轴上,离心率为2,F1,F2为左、右焦点,P为双曲线上一点,且F1PF260,12,求双曲线的标准方程解析:如图所示,设双曲线方程为1(a0,b0)e2,c2a.由双曲线的定义,得|PF1|PF2|2ac,在PF1F2中,由余弦定理,得:|F1F2|2|PF1|2|PF2|22|PF1|PF2|cos60(|PF1|PF2|)22|PF1|PF2|(1cos60),即4c2c2|PF1|PF2|.又SPF1F212,|PF1|PF2|sin6012,即|PF1|PF2|48.由,得c216,c4,则a2,b2c2a212,所求的双曲线方程为1.20(本小题满分12分)已知抛物线顶点在原点,焦点在x轴上,又知此抛物线上一点A(4,m)到焦点的距离为6.(1)求此抛物线的方程;(2)若此抛物线方程与直线ykx2相交于不同的两点A、B,且AB中点横坐标为2,求k的值解析:(1)由题意设抛物线方程为y22px,p0其准线方程为x,A(4,m)到焦点的距离等于A到其准线的距离,46,p4,此抛物线的方程为y28x.(2)由消去y得k2x2(4k8)x40,直线ykx2与抛物线相交于不同两点A、B,则有,解得k1且k0,由x1x24解得k2或k1(舍去)所求k的值为2.21(本小题满分12分)已知椭圆1(ab0)的一个顶点为A(0,1),离心率为,过点B(0,2)及左焦点F1的直线交椭圆于C,D两点,右焦点设为F2.(1)求椭圆的方程;(2)求CDF2的面积解析:(1)由题意知b1,且c2a2b2,解得a,c1.易得椭圆方程为y21.(2)F1(1,0),直线BF1的方程为y2x2,由得9x216x60.162496400,所以直线与椭圆有两个公共点,设为C(x1,y1),D(x2,y2),则|CD|x1x2|,又点F2到直线BF1的距离d,故|CD|d.22(本小题满分12分)过点C(0,1)的椭圆1(ab0)的离心率为,椭圆与x轴交于两点A(a,0),B(a,0),过点C的直线l与椭圆交于另一点D,并与x轴交于点P,直线AC与直线BD交于点Q.(1)当直线l过椭圆右焦点时,求线段CD的长;(2)当点P异于点B时,求证:为定值解析:(1)由已知得b1,解得a2,c,所以椭圆方程为y21.椭圆的右焦点为(,0),此时直线l的方程为yx1,代入椭圆方程化简得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论