


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
8.1 二元一次方程组一、教材分析1、教材的结构、内容本节课选自人教版七年级下册第一节二元一次方程组内容,它主要研究二元一次方程组及其概念。2、教材的地位、作用本节课是在一元一次方程及其解法的基础上的一节课,它加深了学生对方程及方程解的理解,同时为后续二元一次方程组解法的学习作了知识上的储备。教材从一个篮球联赛中的问题入手,归纳出二元一次方程组及其解的概念,并估算简单的二元一次方程(组)的解,充分体现了数学源于生活与数学的使用价值,让学生感受到二元一次方程组产生的背景,激发学生的学习兴趣。二、教学目标1. 知识与技能(1) 理解二元一次方程(组)及二元一次方程(组)解的概念;(2) 能判断一个方程组是否是二元一次方程组;(3) 学会求出某二元一次方程的几个解和检验某对数值是否为二元一次方程(组)的解;(4) 学会把二元一次方程中的一个未知数用另一个未知数的一次式来表示。2. 过程与方法 以含有多个未知数的实际问题为背景,经历“分析数量关糸,设未知数,列方程,解方程和检验结果”,体会方程组是刻画现实世界中含有多个未知数的问题的数学模型。3. 情感、态度与价值观 通过探究实际问题,进一步认识利用二元一次方程组解决问题的基本过程,体会数学的应用价值,提高分析问题、解决问题的能力。三、教学重点和难点1. 教学重点 二元一次方程(组)的意义及二元一次方程(组)解的概念。2. 教学难点(1)二元一次方程组的含义;(2)把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程。四、教学过程 (一)创设情境,导入新课情境:篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得一分,某队想在全部22场比赛中得到40分。问题:这个队胜负场数分别是多少?【师生活动】 学生独立思考,教师点名回答【教师归纳】 法一:可列一元一次方程来解(详细过程略); 法二:可设胜负场数分别为x场、y场,那么x、y应同时满足以下两个方程x+y=22, 2x+y=40。【设计意图】首先,情境的设计源于生活,能够让学生体会数学概念形成的背景以及数学在实际生活中应用的广泛性,激发学生会的数学学习兴趣。其次,情境中的问题,很自然地能够引出本节课的重点。(二)师生合作,形成概念1. 二元一次方程定义:含有两个未知数,并且未知项的次数都是1次的整式方程叫做二元一次方程。定义剖析问题:观察方程x+y=22,2x+y=40,它们与一元一次方程有什么不同?它们之间又有什么共同特点?【师生活动】 学生独立思考,教师点名回答【教师归纳】(1)含有两个未知数;(2)未知项的次数是1次;(3)整式方程。2.二元一次方程的解问题:我们已经会求一元一次方程的解,那么,同学们能分别求一下方程x+y=22,2x+y=40的解吗?它们的解有什么特点?【师生活动】 学生独立思考,教师点名回答【教师归纳】 列表直观地体现两个方程解的情况,强调用含x的式子表示y,即y22x(x可取一些自然数),显然,表中每一对x、y的值都是方程x+y=22的解;满足二元一次方程的解不是唯一的。定义:使二元一次方程两边的值相等的一对未知数的值叫做二元一次方程的一个解。一般地,一个二元一次方程有无数解。3.二元一次方程组【教师引导】 上面的问题包含了两个必须同时满足的条件,也就是未知数x、y必须同时满足方程xy22和2xy40,把两个方程合在一起,写成 xy22 2xy40 定义:像这样,把含有两个未知数且未知项的次数均为1次的两个整式方程合在一起,就组成二元一次方程组。4.二元一次方程组的解定义:使二元一次方程组的两个方程左、右两边的值都相等的两个未知数的值,叫做二元一次方程组的解。(三)例题讲解,巩固新知例1:请你判断下列式子是否为二元一次方程?(1) x-2y=8; (4) a+1/2b;(2) x2+y=0; (5) xy+y=2;(3) x=2/y+1; (6)x/3 +2y=0。例2:请你判断下列哪些表示二元一次方程组? (1); (4); (2); (5) (3); (6)例3: 判断下列各组未知数的值是不是二元一次方程组的解?(1),(2) ,,,(3),(一般地,一个二元一次方程组只有一个
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 私自购房合同范本
- 丁桥租房合同范本
- 摆摊工具租赁合同范本
- 关于logo设计合同范本
- 装饰装修维修合同范本
- 回迁楼回购合同范本
- 房租买卖简易合同范本
- 高空安装合同范本
- 购房合同范本哪里看
- 消防栓安全知识培训课件
- 2025重庆对外建设集团招聘41人笔试参考题库附答案解析
- 高警示药品风险管理
- 精选芭蕾舞男女演员之间的潜规则汇总
- 慢阻肺随访记录表格模板
- J-STD-020D[1].1中文版
- SF∕T 0124-2021 录像过程分析技术规范
- 四讲业主业主大会业主委员会PPT课件
- 永磁涡流传动器的应用示范及产业化20150706
- 被执行人财产申报表
- 复合活性羟基磷灰石陶瓷的研制及其生物相容性研究
- 《放射物理与防护》第四章
评论
0/150
提交评论