



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
【人教版】初中数学九年级知识点总结:21二次根式【编者按】二次根式是初中数学的基础性内容,也是考试的常考点。这一部分知识是在学完了八年级的反比例函数、勾股定理及其应用等内容的基础之上继续学习的,它也是今后学习其他数学知识的基础。因此,对于这种基础性的知识希望同学们能够牢固的掌握。一、目标与要求对于本章内容,学习后应达到以下几方面要求:1. 理解二次根式的概念,了解被开方数必须是非负数的理由;2. 了解最简二次根式的概念;3. 理解并掌握下列结论:1)是非负数;(2);(3);4. 掌握二次根式的加、减、乘、除运算法则,会用它们进行有关实数的简单四则运算;5. 了解代数式的概念,进一步体会代数式在表示数量关系方面的作用。二、知识框架三、重点1.二次根式(a0)的内涵,(a0)是一个非负数,()2a(a0),=a(a0)及其运用。2.二次根式乘除法的规定及其运用。3.(a0,b0),=(a0,b0)及它们的运用。4.=(a0,b0)和=(a0,b0)及利用它们进行运算。5.最简二次根式的概念。6.二次根式的加减运算的运用。7.二次根式的乘除、乘方等运算规律;四、难点1.对(a0)是一个非负数的理解,对等式()2a(a0)及=a(a0)的理解及应用。2.用分类思想的方法导出(a0)是一个非负数,用探究的方法导出()2=a(a0)。3.二次根式的乘法、除法的条件限制。4.会判断这个二次根式是否是最简二次根式。5.利用最简二次根式的概念把一个二次根式化成最简二次根式。五、知识点、概念总结1.二次根式定义:一般形如(a0)的代数式叫做二次根式。当a0时,表示a的算术平方根;当a小于0时,非二次根式(在一元二次方程中,若根号下为负数,则无实数根) 2.二次根式概念:式子(a0)叫二次根式。(a0)是一个非负数。其中,a叫做被开方数。3.二次根式的性质(1) (2) (3)(4)4. 二次根式的几何意义(1)a0 ; 0 双重非负性 (2) c=a2+b2表示直角三角形内,斜边等于两直角边的平方和的根号,即勾股定理推论。5.最简二次根式若二次根式满足被开方数的因数是整数,因式是整式,被开方数中不含能开得尽方的因数或因式,这样的二次根式叫做最简二次根式。6.化二次根式为最简二次根式的方法和步骤:(1)如果被开方数是分数(包括小数)或分式,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简。(2)如果被开方数是整数或整式,先将他们分解因数或因式,然后把能开得尽方的因数或因式开出来。7.同类二次根式几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式。8.二次根式的乘法和除法(1)积的算数平方根的性质 ab=ab(a0,b0) (2) 乘法法则 ab=ab(a0,b0) 二次根式的乘法运算法则,用语言叙述为:两个因式的算术平方根的积,等于这两个因式积的算术平方根。 (3)除法法则 ab=ab(a0,b0) 二次根式的除法运算法则,用语言叙述为:两个数的算数平方根的商,等于这两个数商的算数平方根。 (4)有理化根式。 如果两个含有根式的代数式的积不再含有根式,那么这两个代数式叫做有理化根式,也称有理化因式。9.二次根式的加法和减法(1) 同类二次根式 一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式。 (2) 合并同类二次根式 把几个同类二次根式合并为一个二次根式就叫做合并同类二次根式。 (3)二次根式加减时,可以先将二次根式化为最简二次根式,再将被开方数相同的进行合并。 1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 乐理考试题及答案小学
- 消防安全生产人考试题库及答案解析
- 矿山电工考试题及答案
- 课件显示不完整问题
- 教师招聘之《小学教师招聘》考前自测高频考点模拟试题及完整答案详解(典优)
- 课件时间修改
- 铝及铝合金熔铸工晋升考核试卷及答案
- 2025年中国纸浆模包装制品数据监测报告
- 轻冶沉降工技能操作考核试卷及答案
- 经济政治考试题及答案
- 《火灾调查 第2版》 课件 第5-7章 火灾调查分析、放火火灾调查、电气火灾调查
- 2024-2025学年人教版数学九年级上册第一次月考试题
- 消化道出血诊疗规范2022版
- 退休返聘人员劳务合同范本
- 储能柜质保协议
- 教学课件 《自动化制造系统(第4版)》张根保
- KLA缺陷检查培训
- 收购组织财务尽职调查资料清单
- 产业链风险管理
- 四川省普通高中2022-2023学年学业水平考试英语试题
- 通信管道管线施工安全操作规程
评论
0/150
提交评论