已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
任意角、弧度 任意角1角(1)角的概念:角可以看成平面内_绕着它的_从一个位置_到另一个位置所形成的图形(2)角的分类:按旋转方向可将角分为如下三类:类型定义图示正角按_所形成的角负角按_所形成的角零角一条射线_,称它形成了一个零角2.象限角以角的顶点为坐标原点,角的始边为x轴正半轴重合,建立平面直角坐标系,那么,角的终边在第几象限,就说这个角是_如果角的终边在坐标轴上,就认为这个角不属于任何一个象限3终边相同的角所有与角终边相同的角,连同角在内,可构成一个集合S|_,即任一与角终边相同的角,都可以表示成角与整数个周角的和一、填空题1经过10分钟,分针转了_度2若角与的终边相同,则的终边落在_3若是第四象限角,则180是第_象限角42011是第_象限角5与495终边相同的最大负角是_,最小正角是_6已知为第三象限角,则所在的象限是第_象限7如图所示,终边落在阴影部分(含边界)的角的集合是_8若1 690,角与终边相同,且360360,则_.9集合M,P,则M、P之间的 关系为_ 10已知是小于360的正角,如果7角的终边与的终边重合,则角的集合是_二、解答题11在0360范围内,找出与下列各角终边相同的角,并判定它们是第几象限角(1)150; (2)650; (3)95015.12如图所示,写出终边落在阴影部分的角的集合 13 如图所示,写出终边落在直线yx上的角的集合(用0到360间的角表示) 14设是第二象限角,问是第几象限角?答案解析知识梳理1(1)一条射线端点旋转(2)逆时针方向旋转顺时针方向旋转没有作任何旋转2第几象限角3k360,kZ作业设计1602.x轴的正半轴3.三4二解析20116360149,且149是第二象限角,2011是第二象限角5135225解析495360(135),4952360225.6二或四解析由k360180k360270,kZ,得36090360135,kZ.当k为偶数时,为第二象限角;当k为奇数时,为第四象限角7|k36045k360120,kZ8110或250解析1 6904360250,k360250,kZ.360360,k1或0.110或250.9MP解析对集合M来说,x(2k1)45,即45的奇数倍;对集合P来说,x(k2)45,即45的倍数1060,120,180,240,300解析7角的终边与角的终边重合,7k360(kZ),k60,又0360,kZ,60,120,180,240,300.角的集合是60,120,180,240,30011解(1)因为150360210,所以在0360范围内,与150角终边相同的角是210角,它是第三象限角(2)因为650360290,所以在0360范围内,与650角终边相同的角是290角,它是第四象限角(3)因为95015336012945,所以在0360范围内,与95015角终边相同的角是12945角,它是第二象限角12解设终边落在阴影部分的角为,角的集合由两部分组成|k36030k360105,kZ|k360210k360285,kZ角的集合应当是集合与的并集:|k36030k360105,kZ|k360210k360285,kZ|2k180302k180105,kZ|(2k1)18030(2k1)180105,kZ|2k180302k180105或(2k1)18030(2k1)180105,kZ|k18030k180105,kZ13解终边落在yx (x0)上的角的集合是S1|60k360,kZ,终边落在yx (x0) 上的角的集合是S2|240k360,kZ,于是终边在yx上角的集合是S|60k360,kZ|240k360,kZ|602k180,kZ|60(2k1)180,kZ|60n180,nZ14解当为第二象限角时,90k360180k360,kZ,3036060360,kZ.当k3n时,30n36060n360,此时为第一象限角;当k3n1时,150n360180n360,此时为第二象限角;当k3n2时,270n360300n360,此时为第四象限角综上可知是第一、二、四象限角 弧度制1理解角度制与弧度制的概念,掌握角的不同度量制度,能对弧度和角度进行正确的变换2掌握并会应用弧度制下的弧长公式和扇形面积公式1角的单位制(1)角度制:规定周角的_为1度的角,用度作为单位来度量角的单位制叫做角度制(2)弧度制:把长度等于_的弧所对的圆心角叫做1弧度的角,记作_(3)角的弧度数求法:如果半径为r的圆的圆心角所对的弧长为l,那么l,r之间存在的关系是:_;这里的正负由角的_决定正角的弧度数是一个_,负角的弧度数是一个_,零角的弧度数是_2角度制与弧度制的换算角度化弧度弧度化角度360_ rad2 rad_180_ rad rad_1_rad0.017 45 rad1 rad_57183.扇形的弧长及面积公式设扇形的半径为R,弧长为l, (02)为其圆心角,则度量单位类别为角度制为弧度制扇形的弧长l_l_扇形的面积S_S_一、填空题1把表示成2k(kZ)的形式,使|最小的值是_2若扇形圆心角为216,弧长为30,则扇形半径为_3集合A与集合B的关系是_4已知2弧度的圆心角所对的弦长为2,那么这个圆心角所对的弧长是_5扇形周长为6 cm,面积为2 cm2,则其圆心角的弧度数是_6已知集合A|2k(2k1),kZ,B|44,则AB_.7若角,终边关于原点对称,且,则角的集合是_8若角的终边与角的终边关于直线yx对称,且(4,4),则角的集合为_9若20),当为多少弧度时,该扇形有最大面积?11.2弧度制知识梳理1(1)(2)半径长1 rad(3)|终边的旋转方向正数负数0223601803.RR2lR作业设计1解析2,.225解析216216,lrr30,r25.3AB4.解析r,l|r.51或4解析设扇形半径为r,圆心角为,则,解得或.6|0解析集合A限制了角终边只能落在x轴上方或x轴上7|2k,kZ解析由对称性知,角的终边与的终边相同,角的集合是|2k,kZ8.解析由题意,角与终边相同,则2,2,4.9.或解析,.1023解析设扇形内切圆半径为r,则rr2ra.a3r,S内切r2.S扇形r2a29r2r2.S内切S扇形23.11解设扇形的圆心角为,半径为r,弧长为l,面积为S,则l2r40,l402r.Slr(402r)r20rr2(r10)2100.当半径r10 cm时,扇形的面积最大,最大值为100 cm2,此时2 rad.12解设第一次相遇所用的时间为t秒圆的半径为R4,4(tt)24,解得t4,故P点走过 rad,Q点走过 rad.答P,Q第一次相遇时所用的时间为4秒,P,Q点各自走过的弧度分别为 rad, rad.134解析设圆半径为r
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025广东惠州博罗县榕盛城市建设投资有限公司及下属子公司招聘2名工作人员拟聘用人员笔试历年典型考点题库附带答案详解试卷3套
- 2025山东济南高新控股集团有限公司招聘10人笔试历年典型考点题库附带答案详解试卷3套
- 2025安徽泾县宣纸小镇有限公司招聘3人笔试历年备考题库附带答案详解试卷3套
- 2025四川省广安金广建筑有限公司招聘财务部出纳人员1人笔试历年常考点试题专练附带答案详解试卷3套
- 2025年及未来5年市场数据中国外径研磨机行业市场深度分析及投资战略咨询报告
- 机场综合交通枢纽配套工程建设工程方案
- 2025上海地铁招聘96名见习人员笔试历年典型考点题库附带答案详解试卷3套
- 福建公务员考试李杨菲试题及答案
- 凤山公务员考试试题及答案
- 定边公务员考试试题及答案
- 外派美国员工管理办法
- JJG 597-2025交流电能表检定装置检定规程
- 销售新人培训
- -数字经济概论(第二版)-教学大纲及每章教学重点
- 肿瘤免疫治疗不良反应护理规范
- 火锅教学课件
- 2025年 社区工作者招聘考试笔试试卷(160题)附答案
- G33-Ⅰ(221)填报说明要点
- 国有土地上房屋征收社会稳定风险评估报告
- 基于CFD的新型超音速冷喷涂喷管气动设计与数值模拟
- 牧原企业文化培训考试题及答案
评论
0/150
提交评论