32第四章 电磁感应电磁感应定律综合应用.ppt_第1页
32第四章 电磁感应电磁感应定律综合应用.ppt_第2页
32第四章 电磁感应电磁感应定律综合应用.ppt_第3页
32第四章 电磁感应电磁感应定律综合应用.ppt_第4页
32第四章 电磁感应电磁感应定律综合应用.ppt_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

法拉第电磁感应定律 一 电磁感应现象 产生感应电流的条件 1 闭合电路的一部分导体做切割磁力线运动时 有感应电流产生 2 闭合电路中的磁通量发生变化时 有感应电流产生 二 感应电动势的大小 1 法拉第电磁感应定律 a 如果磁感应强度b不变 磁通量的变化是由于闭合电路的面积发生变化而引起的 则有e nb s t b 如果闭合电路的面积不变 磁通量的变化是由于磁感应强度b发生变化而引起的 则有e ns b t c 如果磁通量的变化是由于磁感应强度b和闭合电路的面积共同发生变化而引起的 则有e n bs t 电路中感应电动势的大小 跟穿过这一电路的磁通量的变化率成正比 e n t 2 切割磁力线运动时 a 导体平动时 e blvsin 为b和v之间的夹角 若b v l三者两两垂直 则e blv b 导体棒以端点为轴 在垂直于磁感应线的匀强磁场中匀速转动 e 1 2b l2 c 矩形线圈在匀强磁场中绕垂直于磁场的任意轴匀速转动时 e nb ssin 为线圈平面和中性面之间的夹角 注意 1 t的区别 变化的物理量达到最大时 其对时间的变化率等于0 2 e n t和e blvsin的区别和联系 产生感应电动势的那部分导体相当于电源 1 关于线圈中产生的感应电动势 下列叙述中正确的是 a 穿过线圈的磁通量越大 感应电动势越大 b 穿过线圈的磁通量增量越大 感应电动势越大 c 磁通量减少得越快 感应电动势越大 d 磁通量为0时 感应电动势也为0 e 线圈中磁通量变化越大 感应电动势一定越大f 线圈中磁通量变化越快 感应电动势越大g 线圈放在磁感强度越强的地方 产生的感应电动势一定越大 cf 解 e n t i e r q i t n r d 例1 用同样材料和规格的导线做成的圆环a和b 它们的半径之比ra rb 2 1 连接两圆环部分的两根直导线的电阻不计 均匀变化的磁场具有理想的边界如图所示 磁感应强度以恒定的变化率减少 那么当a环置于磁场中与b环置于磁场中两种情况下 a b两点电势差之比u1 u2为 解 设小圆电阻为r 则大圆电阻为2r 小圆面积为s 大圆面积为4s 分别画出等效电路如图 e t s b t s 由闭合电路欧姆定律对上图u1 e1 3 对下图u2 2e2 3 u1 u2 e1 2e2 4s 2s 2 2 1 2有一边长为l 匝数为n 电阻为r的正方形闭合线框 处于磁感应强度为b匀强磁场中 磁场方向垂直于线圈平面 若将线框在磁场中翻转180 求在这个过程中通过导线横截面的电量 解 将线框转过180 则穿过线框的磁通量的变化量大小是 2bs 2bl2 这个过程中产生的感应电动势为 e n t 感应电流i e r 所以电量q i t n r 2nbl2 r 例2 如图示 匀强磁场竖直下 一根直导线ab在水平桌面上 以匀速率v向右垂直磁感应线滑入匀强磁场中 做切割磁感应线运动 不考虑空气阻力 直导线ab在下落过程中产生的感应电动势将会 a 逐渐增大b 逐渐减小c 为0d 保持不变 解 e blvtsin blvx ab做平抛运动 水平速度保持不变 感应电动势保持不变 d 3如图 一圆环与外切正方形线框均由相同的绝缘导线制成 并各自形成闭合回路 匀强磁场布满整个方形线框 当磁场均匀变化时 线框和圆环中的感应电动势之比是多大 感应电流之比等于多少 解 设正方形边长为2a 则圆环半径为a 两者面积之比为s1 s2 4a2 a2 4 电阻之比为r1 r2 8a 2 a 4 e t s b t s e1 e2 s1 s2 4a2 a2 4 1 将一条形磁铁插入螺线管线圈 第一次插入用0 2秒 第二次插入用0 4秒 并且两次起始和终了位置相同 则 a 第一次磁通量变化比第二次大b 第一次磁通量变化比第二次快c 第一次产生的感应电动势比第二次大d 若断开电键s 两次均无感应电流 bcd 两次线圈中磁通量之比为 感应电动势之比为 电流强度之比为 通过线圈的电量之比为 线圈放出的热量之比为 解 相同 1 2 1 1 1 1 e n t 1 t e1 e2 t2 t1 2 1 2 1 i e r e i1 i2 e1 e2 2 1 2 1 q it et r n r q1 q2 1 1 1 1 q i2rt e2t q1 q2 2 1 2 1 2 矩形形线框abcd绕oo 轴在磁感强度为0 2t的匀强磁场中以2r s的转速匀速转动 已知ab 20cm bd 40cm 匝数为100匝 当线框从如图示位置开始转过90 则线圈中磁通量的变化量 等于多少 磁通量平均变化率为多少 线圈中产生的平均感应电动势为多少 解 转过90 时 线圈中磁通量的变化量 bs 0 0 016wb 周期为t 1 2 0 5s t 1 4t 0 125s t 0 016 0 125 0 128wb s e n t 12 8v 例3 单匝矩形线圈在匀强磁场中匀速转动 转轴垂直于磁场 若线圈所围面积里磁通量随时间变化的规律如图所示 则线圈中 a o时刻感应电动势最大b d时刻感应电动势为零c d时刻感应电动势最大d o至d时间内平均感生电动势为0 4v abd 例4 如图所示 线圈内有理想边界的磁场 当磁场均匀增加时 有一带电粒子静止于平行板 两板水平放置 电容器中间 则此粒子带 电 若线圈的匝数为n 平行板电容器的板间距离为d 粒子的质量为m 带电量为q 则磁感应强度的变化率为 设线圈的面积为s 解 分析粒子的受力情况如图 由平衡条件得qe qu d mg 由楞次定律 上板带正电 e向下 粒子带负电 由法拉第电磁感应定律u n t ns b t b t u ns mgd nqs 负 mgd nqs 例5 一个n匝圆线圈 放在磁感强度为b的匀强磁场中 线圈平面跟磁感强度方向成30 角 磁感强度随时间均匀变化 线圈导线规格不变 下列方法中可使线圈中感应电流增加一倍的是 a 将线圈匝数增加一倍b 将线圈面积增加一倍c 将线圈半径增加一倍d 适当改变线圈的取向 解 e n t ns b t sin30 nsb ti e r 线圈匝数增加一倍 e和电阻r都增大一倍 i不变 线圈面积增加一倍 e增大到2倍 r增大到倍 i增大到倍 线圈半径增加一倍 e增大到4倍 r增大到2倍 i加倍 改变线圈的取向 使线圈平面跟磁感强度垂直 e增大一倍 r不变 i加倍 cd 电磁感应和电路规律的综合应用 1 产生感应电动势的导体相当于一个电源 感应电动势等效于电源电动势 产生感应电动势的导体的电阻等效于电源的内阻 2 电源内部电流的方向是从负极流向正极 即从低电势流向高电势 3 产生感应电动势的导体跟用电器连接 可以对用电器供电 由闭合电路欧姆定律求解各种问题 4 产生感应电动势的导体跟电容器连接 可对电容器充电 稳定后 电容器相当于断路 其所带电量可用公式q cu来计算 5 解决电磁感应中的电路问题 必须按题意画出等效电路 其余问题为电路分析和闭合电路欧姆定律的应用 电磁感应和力学规律的综合应用 电磁感应中产生的感应电流在磁场中将受到安培力的作用 因此 电磁感应问题往往跟力学问题联系在一起 解决这类电磁感应中的力学问题 不仅要应用电磁学中的有关规律 如楞次定律 法拉第电磁感应定律 左右手定则 安培力的计算公式等 还要应用力学中的有关规律 如牛顿运动定律 动量定理 动能定理 动量守恒定律 机械能守恒定律等 要将电磁学和力学的知识综合起来应用 由于安培力和导体中的电流 运动速度均有关 所以对磁场中运动导体进行动态分析十分必要 电磁感应中的能量转化 1 电磁感应现象的实质是不同形式能量转化的过程 产生和维持感应电流的存在的过程就是其它形式的能量转化为感应电流电能的过程 2 安培力做正功的过程是电能转化为其它形式能量的过程 安培力做多少正功 就有多少电能转化为其它形式能量 3 安培力做负功的过程是其它形式能量转化为电能的过程 克服安培力做多少功 就有多少其它形式能量转化为电能 4 导体在达到稳定状态之前 外力移动导体

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论