全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
教学设计课题21.2.1公式法教学目标及其处理方法重点难点知识目标理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练应用公式法解一元二次方程能力目标复习具体数字的一元二次方程配方法的解题过程,引入ax2+bx+c=0(a0)的求根公式的推导公式,并应用公式法解一元二次方程情感,态度和价值观目标使同学们体会到转化等数学思想;经历设置丰富的问题情景,使学生体会到建立数学模型解决实际问题的过程,从而更好地理解方程的意义和作用,激发学生的学习兴趣处理方法教师引导,学生讨论和自主动手掌握新课内容教学手段和教学方式教学手段:电教设备(班班通)教学方式:电教课前提测评,导入新课填空题 1如果x2+4x-5=0,则x=_ 2无论x、y取任何实数,多项式x2+y2-2x-4y+16的值总是_数 3如果16(x-y)2+40(x-y)+25=0,那么x与y的关系是_教学过程的设计一、复习引入 (学生活动)用配方法解下列方程 (1)6x2-7x+1=0 (2)4x2-3x=52 (老师点评) (1)移项,得:6x2-7x=-1 二次项系数化为1,得:x2-x=- 配方,得:x2-x+()2=-+()2 (x-)2=x-= x1=+=1 x2=-+= (2)略 总结用配方法解一元二次方程的步骤(学生总结,老师点评) (1)移项; (2)化二次项系数为1; (3)方程两边都加上一次项系数的一半的平方; (4)原方程变形为(x+m)2=n的形式; (5)如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解 二、探索新知 如果这个一元二次方程是一般形式ax2+bx+c=0(a0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题 问题:已知ax2+bx+c=0(a0)且b2-4ac0,试推导它的两个根x1=,x2= 分析:因为前面具体数字已做得很多,我们现在不妨把a、b、c也当成一个具体数字,根据上面的解题步骤就可以一直推下去 解:移项,得:ax2+bx=-c 二次项系数化为1,得x2+x=- 配方,得:x2+x+()2=-+()2 即(x+)2= b2-4ac0且4a20 0 直接开平方,得:x+= 即x= x1=,x2= 由上可知,一元二次方程ax2+bx+c=0(a0)的根由方程的系数a、b、c而定,因此:(1)解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当b-4ac0时,将a、b、c代入式子x=就得到方程的根 (2)这个式子叫做一元二次方程的求根公式 (3)利用求根公式解一元二次方程的方法叫公式法 (4)由求根公式可知,一元二次方程最多有两个实数能力测评选择题 1用公式法解方程4x2-12x=3,得到( )Ax= Bx= Cx= Dx= 2方程x2+4x+6=0的根是( )Ax1=,x2= Bx1=6,x2=Cx1=2,x2= Dx1=x2=-作业练习册板书设计22.2.2 公式法(1)求根公式的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 台州市中医院护理质量根本原因分析考核
- 南通市中医院消化内科专科护士晋升护理专家答辩题库
- 芜湖市人民医院心血管疾病患者健康教育能力考核
- 绥化市中医院美容手术术前设计考核
- 镇江市中医院肿瘤整形修复技术考核
- 科学服务活动方案
- 社团活动做花灯活动方案
- 社区文化大广场活动方案
- 社区扶助活动方案
- 舟山市人民医院刮痧技术资格认证
- 学校网评员能力提升培训体系
- 四川省绵阳市2024-2025学年上学期八年级期末数学试卷(含答案)
- 全国统一市政工程预算定额 第8册 路灯工程
- 桥梁涂装专项施工方案
- 园林绿化工程绿化施工法律法规考核试卷
- 【大学课件】证券发行市场
- 新农村太阳能路灯照明设计方案
- 中国高血压防治指南(2024年修订版)解读课件
- 租赁共同经营协议模板
- GB/T 19609-2024卷烟用常规分析用吸烟机测定总粒相物和焦油
- 公路工程标准施工招标文件(2018年版)
评论
0/150
提交评论