数学人教版九年级上册24.1.3弧弦圆心角说课稿.doc_第1页
数学人教版九年级上册24.1.3弧弦圆心角说课稿.doc_第2页
数学人教版九年级上册24.1.3弧弦圆心角说课稿.doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

弧、弦、圆心角 说课稿永城市第一初级中学 李欣一、教材分析:本节课的内容是人教版义务教育课程标准实验教科书数学九年级(上)24.1.3弧、弦与圆心角的关系的内容。本节课主要是研究圆心角、弧、弦之间的关系并利用其解决相关问题,是在学生了解了圆和学习了垂径定理以及旋转的有关知识的基础上进行的,它是前面所学知识的应用,也是本章中证明同圆或等圆中弧等、角等以及线段相等的重要依据,是下一节课的理论基础,因此,本节课的学习将对今后的学习和培养学生能力有重要的作用。二、教学目标分析:知识与能力1.了解圆心角的概念2.掌握弧、弦、圆心角关系定理及其结论3.能灵活应用关系定理及其结论解决问题。过程与方法经历探索弧、弦、圆心角关系定理及其结论的过程发展学生的数学思考能力和合情推理能力。情感态度与价值观感受几何图形的对称美和变化美,体会数学的魅力和价值,激发学生数学的求知欲和探索欲。三教学重难点重点:弧、弦、圆心角关系定理及其结论的应用。难点:定理及其结论的探索与应用。三、教法分析:根据学生现有的知识水平及学生的年龄特征和心理特征,通过多媒体演示动画使学生把圆与一般的中心对称图形区别开来。由此激发兴趣学习新的知识,然后指导学生通过旋转操作后观察、探究、讨论、自己得出结论。教师再加以点拨总结。这样学生的印象比较深刻,掌握的也比较牢固。接着设计相应的例题与练习使学生利用已探究的知识解决证明或计算题,使学生真正具备解决问题的能力,促进学生共同进步。教学过程中及时给学生鼓励肯定学生探究的结论的不简单之处,从而提高学习的兴趣和增强学习的信心。通过教学引导学生欣赏圆的旋转不变性,让学生自己探究并发现圆心角、弧、弦之间的相等关系。培养学生的逻辑思维能力和创新能力。利用圆心角、弧、弦之间的关系尝试解决证明或计算问题,培养学生利用所学知识解决实际问题的能力,使学生增强勇于挑战的决心。形成在探究中坚强的毅力。教学活动是教与学双边互动过程,必须充分发挥学生的主体和教师的主导作用,因此教学目标的达成,需优选教学法,根据本节课的特点,在探究圆心角,弦,弧之间的相等关系我采用发现模式,基本程序是:猜想验证证明归纳总结。这种教学模式注重知识的形成过程,有利于体现学生的主体地位和分析问题的方法,例题教学时采用讲授模式,一方面通过新知识的讲解练习,及时反馈,查缺补漏,使学生树立信心,培养学习能力,另一方面对大面积提高教学质量也是有意的。在最后小结时运用自学模式。四、教学手段:学生合作交流,多媒体辅助教学.五、教学过程分析:一、创设情景,引入新课1.看一看、思考多媒体动态演示:圆绕圆心O旋转,你发现了什么?圆是中心对称图形吗?对称中心是什么?这些问题设置是让学生感性认识,圆旋转任意度数后都能与自身重合,是中心对称图形。通过多媒体动态演示,目的是让学生观察对比得出圆的特有性质旋转不变性.而圆的中心对称性是其旋转不变性的特例。这为下一个环节的探究提供了理论依据。二、探索新知合作探究,自我发现是获得知识的最佳途径,所以以下几个环节提供自立合作探究的课堂学习环境,引导学生从多方面的挖掘中轻松发现。教学时鼓励学生用多种手段和方法探索图形的性质。在积极开展合作学习的同时锻练学生的数学语言表达能力。1.引出圆心角的概念:我们把顶点在圆心的角叫做圆心角教学中我设计图形让学生辨别,目的是使学生理解会辩别圆心角2.探究圆心角、弧、弦之间的关系定理。多媒体动态演示:将圆心角AOB绕圆心O旋转到AOB的位置,你能发现那些等量关系?为什么?由学生大胆猜想,独立思考后发言,并互相补充。目的是在探究过程中通过猜想,思考,讨论充分调动学生的学习的积极性.根据旋转的性质,将圆心角AOB绕圆心O旋转到AOB的位置时,显然AOB=AOB,连接AB,AB,弦AB与弦AB,和的大小关系又如何? 为了让学生找到他们关系,我是通过这种方式教学:使图形运动起来,让学生观察在运动中学习和研究几何问题,从而培养了学生观察、分析和归纳知识的能力。进一步提出问题,猜想是否正确,我们必须给出证明,怎样证明呢?小组讨论。讨论目的是让学生在交流过程中取长补短,有易于学生积极构建自己的认知。证明过程中学生容易借助全等三角形对应边,对应高相等证明,我是这样处理的,顺应学生思维,让学生意识到全等解决不了证明弧相等,给学生一种冲突,恰如其分引导学生圆在学习中有着特殊的规律,我采用多媒体演示进行旋转,使学生认识到要证明弧相等,可根据定义证明弧重合。在等圆中(两个能够重合的圆),是否也能得到类似的结论呢?请学生动手操作,用图钉将透明纸上的圆的圆心钉在硬纸板上的等圆圆心O上,将透明纸上圆心角AOB绕圆心O旋转到硬纸板上相等的AOB的位置时,连接弦AB,弦AB还相等吗?请用数学语言表达出来?目的是让学生在实践中发现结论依旧成立。在交流过程中培养学生学会倾听使自己的想法更完善,学会表达能更精确运用语言概括。也体现了数学的严谨。定理:在同圆等圆中,相等的圆心角所对的弧相等,所对的弦相等2.剖析定理得出推论 问题1:定理中去掉“在同圆或等圆中”这个前提,请观察图形,你有没有其他想法?(强化了学生对定理的理解,培养学生的思维批判性.)问题2、在同圆等圆中,若圆心角所对的弧相等,你能得到什么结论?在同圆等圆中,如果两条弦相等呢?提出新的问题,我通过让学生动手操做,讨论、交流,类比的得出猜想和证明,老师与学生交流对话,归纳出推论. 推论包含了定理,它是定理的拓展。知识延伸:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等巩固练习 1、已知:如图,AB、CD是O的两条弦,OE、OF为AB、CD的弦心距,根据本节定理及推论填空:(1)如果ABCD,那么_ _,_;(2)如果 = ,那么_ _,_;(3)如果AOBCOD,那么_ _,_ _;(4)如果ABCD,OE垂直AB,OF垂直CD,那么OE与OF相等吗?为什么?本练习是本定理的综合应用,由于在圆中解决有关弦的问题时,常需要做“垂直于弦的直径”,且后面正多边形与圆等内容都涉及构造直角三角形,所以这里练习进行扩充,为后面学习作铺垫,可以让学生归纳为:同圆或等圆中如果个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等通过本练习一方面巩固新知,一方面进行了拓展。4 问题2:相等的弦所对的弧是怎样的?长度相等的弧是等弧吗?在学生得到圆心角、弧、弦之间的相等关系,有点成就感之后直接提出学生容易混淆的问题,激发他们求知欲,通过学生讨论交流,课件演示让学生掌握相等弦所对的优弧和劣弧分别相等,能够互相重合的弧叫等弧,包含两层含义一是度数相等,二是长度相等。同时也让学生感受了数学的周密性。 三、应用、巩固和反思 例1:如图1 ,在O中,=,ACB=60度,求证: AOB=BOC=AOC数学知识逻辑严密,体现了严谨性, 为培养学生逐步完善以求达到掌握新知识, 我用这个例题让学生自主思考,老师板书示范,培养学生正确的书写习惯。巩固练习1;课本85页练习题第2题:图1 图2 巩固练习2:如图2,已知AD=BC,求证:AB=CD变换条件和结论让学生多角度探索问题有利于加深学生对同圆或者等圆中弧,弦,圆心角之间关系的认识,另外引导学生应用新学知识避免用三角形全等。四、课堂回顾,小结收获提问:我们这节课学习?我们都有哪些收获?目的是引导学生有意识的归

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论