



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一元二次方程根与系数的关系公开课教案授课教师:丰山初中 齐鸿授课时间:2016年9月教学目标:1、知识目标:巩固一元二次方程的解法、根的判别式等知识,掌握一元二次方程的根与系数的关系并会初步应用,会运用根与系的关系解决相关数学问题和实际问题。2、能力目标:培养学生分析、观察、归纳的能力和推理论证的能力。3、情感目标:渗透由特殊到一般,再由一般到特殊的认识事物的规律。培养学生去发现规律的积极性及勇于探索的精神和全面辩证地认识事物的能力。教学重点:根与系数的关系的推导、运用。教学难点:正确归纳、理解、运用根与系数的关系,培养学生探索和发现意识。教学方法:发现法,引导法,讲练结合法。教学过程:一、问题情境,导入新课:解下列方程,并填写表格:方 程+x2-2x+1=0x2+3x-10=0x2+5x +4=0观察上面的表格,你能得到什么结论?1、语言叙述你发现的规律; 2、x2+px+q=0的两根x1, x2用式子表示你发现的规律。二、探究新知:1、根与系数关系:(1)关于x的方程的两根,与系数p,q的关系是:, 。引导学生用文字语言来描述一下这两个关系式。并思考:如果一元二次方程二次项的系数不为1,根与系数之间又有怎样的关系呢?二、解下列方程,并填写表格:方 程+2x2-3x-2=0 3x2-4x+1=0问题:上面发现的结论在这里成立吗?请完善规律; 语言叙述发现的规律; ax2+bx+c=0的两根x1, x2用式子表示你发现的规律: (2)形如的方程,如果,两根为,引导学生利用上面的结论猜想,与各项系数a、b、c之间有何关系。然后教师归纳,可以先将方程转化为二次项系数为1的一元二次方程,再利用上面的结论来研究,即:对于方程 ,对于这个结论我们又应该如何证明呢?引导学生利用求根公式给出证明。证明:,当时根为:设,则学生思考、归纳并回答下列问题:(1)你认为什么是根与系数的关系?根与系数的关系有什么作用?(2)运用根与系数的关系要注意些什么? 三、基础练习例1、根据一元二次方程的根与系数的关系,求下列方程的x1, x2 的和与积 (1) x2-6x-15=0 (2) 3x2+7x-9=0 (3) 5x-1=4x2例2、求下列方程的两根之和与两根之积.1)x2-3x+1=0 2)2x2-9x+5=0 3)4x2-7x+1=0 4)2x2+3x=0 5)6x2-1=0 6)3x2-2x=-2 7)3x2=1例3、1、如果-1是方程2X2X+m=0的一个根,则另 一个根是_,m =_。 2、设 X1、X2是方程X24X+1=0的两个根,则 X1+X2 = _ ,X1X2 = _, X12+X22 = ( X1+X2)2 - _ = _ ( X1-X2)2 = ( _ )2 - 4X1X2 = _ 3、判断正误: 以2和-3为根的方程是X2X-6=0 ( )4、已知两个数的和是1,积是-2,则这两个数是 _ 。四、经典题讲解:例1、已知3x2+2x-9=0的两根是x1 , x2 求: (1) (2) x12+x22例2、已知方程x2-(k+1)x+3k=0的一个根是2 , 求它的另一个根及k的值。 五、归纳小结:1、这节课我们学习了什么知识?有何作用?2、运用本节课所学知识解决问题时要注意些什么?六、课后
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论