



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
知识框架(一)知识点归纳1、全等形和全等三角形的概念、性质能够完全重合的两个图形叫做全等形;能够完全重合的两个三角形叫做全等三角形;两个三角形重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。“全等”用符号“”来表示,读作“全等于”。注:记两个全等三角形时,通常把表示对应顶点的字母写在对应的位置上。全等三角形的性质:全等三角形的对应边相等;全等三角形的对应角相等。2、全等变形只改变图形的位置,而不改变其形状大小的图形变换叫做全等变换。全等变换包括以下三种:(1)平移变换: 把图形沿某条直线平行移动;(2)对称变换:将图形沿某直线翻折;(3)旋转变换:将图形绕某点旋转一定的角度到另一个位置。2、两个三角形全等的判定方法(一)有三边对应相等的两个三角形全等(可以简写成“边边边”或“SSS”)3、两个三角形全等的判定方法(二)由两边和它的夹角对应相等的两个三角形全等。(可以简写成“边角边”或“SAS”)4、全等三角形的判定方法(三)(1)有两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”)(2)有两角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”)5、直角三角形全等的判定方法斜边和一条直角边对应相等的两个三角形全等。(可以简写成“斜边、直角边”或“HL”)第1题全等三角形的判定方法SAS专题练习1.如图,AB=AC,AD=AE,欲证ABDACE,可补充条件( ) A.1=2 B.B=C C.D=E D.BAE=CAD第3题2.能判定ABCABC的条件是( )AAB=AB, AC=AC,C=CB. AB=AB, A=A,BC=BCC. AC=AC, A=A,BC=BCD. AC=AC, C=C,BC=BC3.如图,AB与CD交于点O,OA=OC,OD=OB,AOD= ,第4题根据_可得到AODCOB,从而可以得到AD=_4.如图,已知BD=CD,要根据“SAS”判定ABDACD,则还需添加的条件是 。5.如图,已知ABC中,AB=AC,AD平分BAC,请补充完整过程说明ABDACD的理由解:AD平分BAC, _=_(角平分线的定义). 第5题 在ABD和ACD中,ABDACD( )6.如图,AC与BD相交于点O,已知OA=OC,OB=OD,第6题求证:AOBCOD证明:在AOB和COD中AOBCOD( )全等三角形的判定方法ASA/AAS专题练习1.已知:如图 , 1=2 , 3=4求证:AC=AB2. 已知:如图 , FB=CE , ABED , ACFD.F、C在直线 BE上求证:AB=DE , AC=DF3. 已知:如图 , ABBC于B , EFAC于G , DFBC于D , BC=DF求证:AC=EF.4. 已知:如图ACCD于C , BDCD于D , M是AB的中点 , 连结CM并延长交BD于点F。求证:AC=BF5. 已知:如图 , E、D、B、F在同一条直线上 , ADCB , BAD=BCD , DE=BF求证:AECF.6. 如图在ABC和DBC中 , 1=2 , 3=4 , P是BC上任意一点 求证:PA=PD.全等三角形的判定方法SSS专题练习1、如图,在四边形中,AB=DB,AC=DC,请问A和D相等吗?若相等,请写出证明过程;若不相等,请说明理由2.如图,已知AC=FE、BC=DE,点A、D、B、F在一条直线上,AD=FB要用“边边边”证明ABCFDE,除了已知中的AC=FE,BC=DE以外,还应该有什么条件?怎样才能得到这个条件?3如图,若D为BC中点,那么用“SSS”判定ABDACD需添加的一个条件是 _4如图,已知OA = OB,AC = BC,1=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年腾冲市农业农村局所属事业单位招聘考试笔试试题(含答案)
- 雪地木屋餐厅行业深度调研及发展项目商业计划书
- 新型残障人三轮车行业跨境出海项目商业计划书
- 医疗影像诊断设备AI智能设备企业制定与实施新质生产力项目商业计划书
- 国际文化交流企业制定与实施新质生产力项目商业计划书
- 书法手机壳装饰创新创业项目商业计划书
- 酒吧式游戏中心行业跨境出海项目商业计划书
- 仿皮带扣头智能检测功能创新创业项目商业计划书
- 陶瓷文化体验工坊企业制定与实施新质生产力项目商业计划书
- JavaWeb应用程序开发教程(任务驱动式)课件 第7章 基于MyBatis的Web应用程序开发
- 人文素养知识考试复习题库(含答案)
- 新型光学生物测量仪晶星900性能特点及临床应用
- 煤矿企业重大危险源辨识课件
- 中国电影文学学会剧本委托创作合同
- 2023春国开物权法形考任务1-4试题及答案
- 开关电源中达mcs3000ers485接线配置说明
- 比较思想政治教育
- 大桥水上施工环境保护方案
- 第1课《古诗三首》(稚子弄冰)(教学课件+教案+学习任务单+分层作业)五年级语文下册部编版
- 国开电大本科《人文英语4》机考总题库
- JJF 1596-2016X射线工业实时成像系统校准规范
评论
0/150
提交评论