数学人教版八年级下册19.2.1正比例函数(1).doc_第1页
数学人教版八年级下册19.2.1正比例函数(1).doc_第2页
数学人教版八年级下册19.2.1正比例函数(1).doc_第3页
数学人教版八年级下册19.2.1正比例函数(1).doc_第4页
数学人教版八年级下册19.2.1正比例函数(1).doc_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一、目标和目标解析1.目标(1)经历正比例函数概念的形成过程,理解正比例函数的概念;(2)能根据已知条件确定正比例函数的解析式,体会函数建模思想2.目标解析达成目标(1)的标志是:通过对实际问题的分析,知道自变量和对应函数成正比例的特征,能概括抽象出正比例函数的概念达成目标(2)的标志是:能根据实际问题中的已知条件确定变量间的正比例函数关系式,将实际问题抽象为函数模型,体会函数建模思想.二、教学过程设计1.情境引入,初步感知引言上一节我们已经学习了关于函数的最基础的知识,知道了变量与函数、函数的图象及函数的三种表示方法,从这节课开始,我们将重点研究一种最基本的具体函数一次函数,本节课先研究特殊的一次函数正比例函数.问题1 2011年开始运营的京沪高速铁路全长1 318km.设列车的平均速度为300km/h.考虑以下问题:(1)乘京沪高铁列车,从始发站北京南站到终点站上海虹桥站,约需多少小时(结果保留小数点后一位)?(2)京沪高铁列车的行程y(单位:km)与运行时间t(单位:h)之间有何数量关系? (3)京沪高铁列车从北京南站出发2.5h后,是否已经过了距始发站1 100km的南京南站?设计意图:让学生真切感受数学与实际的联系,即数学理论来源于实际又服务于实际帮助学生逐步提高将实际问题抽象为函数模型的能力,初步体会函数建模思想设计意图:由于自变量t是列车运行时间,作为实际问题,自变量的取值是受限制的,应对其取值范围作出说明对问题(2)的分析解答过程让学生回答下列问题:追问1这个问题中两个变量之间的对应关系是函数关系吗?如果是,试说明理由设计意图:让学生感受量与量之间的函数关系,体会函数关系蕴涵在实际问题中,激发学生探究兴趣对理由的说明学生可能有障碍,此时教师要引导学生回顾函数概念的学习过程,用函数的概念来回答:问题中的两个变量,当其中的变量t变化时,另一个变量y随着t的变化而变化,并且对于变量t的每一个确定的值,另一个变量y都有唯一确定的值与之对应追问2 请你写出y与t之间的函数解析式,并分析解析式在结构上是什么形式?追问3 对于自变量t和函数y的每一对对应值,y与t的比值是多少?这个比值会发生变化吗?师生活动: 追问2学生独立完成写出解析式,观察解析式的结构形式后发表意见与同学交流;追问3分小组分别取不同的对应值,求出比值后先小组内统一意见,然后全班交流设计意图:让学生初步感知正比例函数解析式的结构形式为:左边是表示函数的字母,右边是常数(量)与自变量的积的形式正比例函数的基本特征是:对于自变量和函数的每一对对应值,函数值与自变量的比值是一定的,都等于自变量前的那个常数对问题(3)的分析解答后可追问:我们是怎样确认列车是否已经过了南京南站的?师生活动:教师引导学生分析,根据函数解析式,求自变量t=2.5时的函数值,得出列车出发2.5小时的行程,再与两站的实际距离比较,对实际问题的作出解答设计意图:让学生初步体会用函数建模思想解决实际问题的方法2.类比思考,概括共性问题2思考:下列问题中,变量之间的对应关系是函数关系吗?如果是,请写出函数解析式(1)圆的周长l随半径的变化而变化(2)铁的密度为7.8g/cm3,铁块的质量m(单位:g)随它的体积V(单位:cm3)的变化而变化(3)每个练习本的厚度为0.5cm,一些练习本摞在一起的总厚度h(单位:cm)随练习本的个数n的变化而变化(4)冷冻一个0的物体,使它每分钟下降2,物体的温度T(单位:)随冷冻时间(单位:min)的变化而变化师生活动:学生根据每个问题中蕴涵的数量关系和已知条件,运用函数建模思想独立写出每个问题中变量间的函数解析式设计意图:让学生再次感知实际问题中蕴涵的函数关系,体会并运用函数建模思想,提高将实际问题抽象为函数模型的能力追问:这些函数解析式有哪些共同特征?师生活动:引导学生类比问题1的分析方法,对4个解析式从结构形式上分析它们的共同特征,学生分组讨论,教师参与讨论并组织交流设计意图:通过对实际问题抽象出的函数模型观察比较,找出它们具有的共同特征,为归纳抽象正比例函数的概念作准备3.归纳抽象,建立概念问题3 你能否根据上面这些函数的共同特征归纳出这种函数的一般形式?一般形式中各字母的意义是什么?师生活动:教师引导学生归纳出这些函数的一般形式,即都可以写成y=kx(k是常数,k0)的形式设计意图:让学生根据共同特征归纳抽象出正比例函数的一般形式,培养学生从具体问题中抽象出共同具有的本质属性的能力知道一般形式中各字母的意义知道自变量系数的限制条件为k0追问1:函数y=kx(k是常数,k0)中,对于自变量x和函数y的每一组对应值,函数值与对应自变量的比值等于多少?这说明这两个变量之间有怎样的关系?设计意图:强化学生对正比例函数基本特征的认识,知道正比例函数的两个变量具有正比例关系,为给正比例函数下定义埋下伏笔追问2:如果给这样的函数取一个名称,你觉得应该叫什么函数比较合适?师生活动:师生共同归纳出正比例函数的概念一般地,形如y=kx(k是常数,k0)的函数,叫做正比例函数,其中k叫做比例系数设计意图:引导学生根据函数解析式的形式和变量间具有的正比例关系,得出正比例函数的定义4辨析应用深化认知问题4 (1)请你举出几个y是x的正比例函数的解析式;(2)完成教科书第87页练习1,补充问题:如果是,请指出比例系数是多少?(3)完成教科书第87页练习2师生活动:教师提出问题,学生思考、讨论后交流,教师予以激励性评价设计意图:引导学生根据概念辨析正比例函数,能够从实际问题中根据已知条件抽象出函数模型并辨析是否是正比例函数5.反思小结(1)本节课我们学习了哪些知识?(2)正比例函数概念中对比例系数k有怎样的限制条件?(3)学习正比例函数的概念经历了怎样的过程?6布置作业教科书第98页习题19.2第1题(不画函数图象)补充习题:1.已知y是x的正比例函数,且当x=2时,y=8(1)写出函数解析式;(2)当y=6时,求x的值.2.已知y是z的正比例函数,z是x的正比例函数,试说明y是x的正比例函数.五、目标检测设计1. 下列函数中,表示y是x正比例函数的是().Ay =6x By =6(x1) Cy = Dy =6x2设计意图:考查对正比例函数概念的理解2.下列变量之间关系中,一个变量是另一个变量的正比例函数的是().A圆的面积S随半径r的变化而变化 B正方形的周长C随边长a的变化而变化 C蓄水10L的水箱以0.5L/min的流量往外放水,水箱中的剩水量V(单位:L)随放水时间t(单位:min)的变化而变化 D面积为20的三角形的一边a随这边上高h的变化而变化设计意图:考查将实际问题抽象为函数模型的能力和对正比例函数概念的理解3. 已知函数y=(m2)xm24表示y是x的正比例函数,则m的值是 ,这个函数的解析式为 设计意图:考查对正比例函数概念的理解4. 某大楼电梯从1层(地面)直达3层用了20s,若电梯运行是匀速的,则乘坐该电梯从2层直达8层所需时间为 设计意图:考查运用正比例函数模型解决简单实际问题的能力5. 已知蜡烛被燃烧的长度与燃烧时间成正比例,长为24cm的蜡烛,点燃6分钟后,蜡烛变短3.6cm,设蜡烛点燃x分钟后被燃烧的长度为ycm,请解答下列问题:(1)写出y与x的函数关系式;(2)指出自变量的取值范围;(3)当蜡烛燃烧的20分钟后,蜡烛剩下的长度是多少?设计意图:考查将实际问题抽象为函数模型并用正比例函数模型解决简单实际问题的能力一次函数同步测试一、精心选一选1. 下列函数中,表示y是x正比例函数的是().Ay =6x By =6(x1) Cy = Dy =6x2分析:根据正比例函数的意义:一般地,形如y=kx(k是常数,k0)的函数,叫做正比例函数故选A答案:A点评:本题主要考查对正比例函数概念的理解2. 下列正比例函数中,比例系数最小的是().Ay =x By =1.5x Cy =x Dy =2x分析:根据正比例函数的概念可知,4个正比例函数的比例系数分别为、1.5、和2,因为21.5,所以比例系数最小的是2故选D答案:D点评:本题主要考查对正比例函数概念中比例系数k的了解3.下列变量之间关系中,一个变量是另一个变量的正比例函数的是().A圆的面积S随半径r的变化而变化 B正方形的周长C随边长a的变化而变化 C蓄水10L的水箱以0.5L/min的流量往外放水,水箱中的剩水量V(单位:L)随放水时间t(单位:min)的变化而变化 D面积为20的三角形的一边a随这边上高h的变化而变化分析:A问题的函数解析式为S=r2;B问题的函数解析式为C=4a;C问题的函数解析式为V=100.5t;D问题的函数解析式为a =由正比例函数的概念知应选B答案:B点评:本题主要考查将实际问题抽象为函数模型的能力和对正比例函数概念的理解二、细心填一填4. 已知函数y=(m2)xm24表示y是x的正比例函数,则m的值是 ,这个函数的解析式为 分析:根据正比例函数的意义,可知m24=0,且m20,解得m=2,比例系数k= m2=4,故函数解析式为y=4x答案:2,y=4x点评:本题主要考查对正比例函数概念的理解5. 邮购一种图书,每册定价20元,另加书价的5%的邮费,购书x册,需付款y(元)与x的函数关系式为 ,如果是正比例函数,它的比例系数是 分析:根据实际问题蕴含的数量关系,可知y与x的函数关系式为y=20(15%)x,由正比例函数的概念可判断出是正比例函数,其比例系数为20(15%),化简为21答案:y=20(15%)x或写成y=21x,20(15%)或写成21点评:本题主要考查根据已知条件确定函数解析式以及对正比例函数概念的理解6. 某大楼电梯从1层(地面)直达3层用了20s,若电梯运行是匀速的,则乘坐该电梯从2层直达8层所需时间为 分析:电梯运行时间y(单位:s)与电梯运行层数n成正比例关系,设y=kn已知当n=2时,y=20,由此可确定函数解析式为y=10n电梯从从2层直达8层实际运行了6层,即n=6,此时函数y=10n的值为y=106=60(s)答案:60s点评:本题主要考查运用正比例函数模型解决简单实际问题的能力三、专心解一解7. 已知蜡烛被燃烧的长度与燃烧时间成正比例,长为24cm的蜡烛,点燃6分钟后,蜡烛变短3.6cm,设蜡烛点燃x分钟后被燃烧的长度为ycm,请解答下列问题:(1)写出y与x的函数关系式;(2)指出自变量的取值范围;(3)当蜡烛燃烧的20分钟后,蜡烛剩下的长度是多少?分析:(1)由已知蜡烛被燃烧的长度与燃烧时间成正比例,可设y=kx,又因为已知x=6时,y=3.6,可确定y与x的函数关系式为y=0.6x(2)被燃烧最大长度为24cm,即y=24,由y=0.6x可求得x=40,自变量x的取值范围为0x40(3)蜡烛燃烧的20分钟,即x=20,由y=0.6x可求得y=12,蜡烛剩下的长度为2412=12答案:(1)y=0.6x;(2)0x40;(3)12点评:本题主要考查将实际问题抽象为函数模型并用正比例函数模型解决简单实际问题的能力8. 已知y是z的正比

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论