




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
计量概念一、 一元线性回归1. 相关系数:2. 回归分析:是研究一个变量关于另一个变量的依赖关系的计算方法和理论.目的在于通过后者的已知或设定值,去估计和预测前者的均值3. 回归分析和相关分析1) 共同点:都是研究非确定性变量间的统计依赖关系2) 不同点:A. 相关分析中,变量 x 变量 y 处于平等的地位;回归分析中,变量 y 称为因变量,处在被解释的地位,x 称为自变量,用于预测因变量的变化B. 相关分析中所涉及的变量 x 和 y 都是随机变量;回归分析中,因变量 y 是随机变量,自变量 x 可以是随机变量,也可以是非随机的确定变量C. 相关分析主要是描述两个变量之间线性关系的密切程度;回归分析不仅可以揭示变量 x 对变量 y 的影响大小,还可以由回归方程进行预测和控制4. 总体回归线: 在给定解释变量X条件下被解释变量Y的期望轨迹5. 随机干扰项的存在原因:代表未知的影响因素;代表残缺数据;代表众多细小影响因素;代表数据观测误差;代表模型设定误差;变量的内在随机性6. 对模型的基本假设:1) 对模型设定的假设:回归模型是正确的即选择了正确的变量和函数形式2) 对解释变量的假设:X是确定型变量不是随机变量;X在所抽取的样本中具有变异性,随着样本容量的无线增加X的样本方差趋于非零的有限常数.3) 对随机干扰项的假定: 误差项是一个期望值为0的随机变量,即E()=0。对于一个给定的 x 值,y 的期望值为E(y)=0+1x对于所有的x值,的方差2 都相同;误差项是一个服从正态分布的随机变量,且相互独立。即N( 0 ,2 ),对于一个特定的 x 值,它所对应的与其他 x 值所对应的不相关7. 最小二乘法(OLS): 使因变量的观察值与估计值之间的离差平方和达到最小来求得 和的方法8. 如何考察总体估计量的优劣性:线性性、无偏性、有效性、渐近无偏性、一致性、渐近有效性9. 最小二乘法和最大似然法的比较:对于普通最小二乘法,当从模型总体随机抽取n组样本观测值后,最合理的参数估计量应该使得模型能最好地拟合样本数据;而对于最大似然法,当从模型总体随机抽取n组样本观测值后,最合理的参数估计量应该使得从模型中抽取该n组样本观测值的概率最大。10. 样本方差的估计:(书P42)11. 拟合优度:检验模型对样本观测值得拟合程度12. 变差:因变量 y 的取值是不同的,y 取值的这种波动称为变差。变差来源于两个方面:由于自变量 x 的取值不同造成的;除 x 以外的其他因素(如x对y的非线性影响、测量误差等)的影响13. 离差平方和的分解:SST:反映因变量的 n 个观察值与其均值的总离差SSR:反映自变量 x 的变化对因变量 y 取值变化的影响,或者说,是由于 x 与 y 之间的线性关系引起的 y 的取值变化,也称为可解释的平方和SSE:反映除 x 以外的其他因素对 y 取值的影响,也称不可解释的平方和或剩余平方和14. 判定系数: 取值范围在 0 , 1 之间判定系数:就模型而言;说明解释变量对因变量的解释程度;具有非负性相关系数:就两个变量而言;说明两变量线性依存程度;可正可负15. 影响置信区间宽度的因素:1) 置信水平1-:区间宽度随置信水平的增大而增大2) 数据的离散程度(s):区间宽度随离散程度的增大而增大3) 样本容量:区间宽度随样本容量的增大而减小4) 用于预测的 xp与x的差异程度:区间宽度随 xp与x 的差异程度的增大而增大16. 判定系数的实际意义是:在不良贷款取值的变差中,有71.16%可以由不良贷款与贷款余额之间的线性关系来解释,或者说,在不良贷款取值的变动中,有71.16%是由贷款余额所决定的。17. 置信区间:由样本统计量所构造的总体参数的估计区间称为置信区间置信水平:将构造置信区间的步骤重复很多次,置信区间包含总体参数真值的次数所占的比例称为置信水平18. 如何缩小置信区间:1) 增大样本容量n2) 提高模型的拟合优度3) (提高样本观测值得分散度多元)19. OLS求出的是估计值而不是预测值的原因:一是模型中的参数估计量是不确定的二是随机干扰项的影响二、 多元线性回归1. 多元线性回归最小二乘法求回归系数:2. 修正判定系数:(用样本容量n和自变量的个数p去修正, 避免增加自变量而高估 R2,数值小)(1)n很大,k较时,约等于;(2)在k与n相比较大时,小于R2, 要考虑修正的样本决定系数 。(3)校正的判定系数即用自由度进行平均,用“单位”拟合误差进行比较,从而提高了可比性。(4)虽然非校正的判定系数总为正数,但校正的判定系数可能为负数。3. 回归系数(估计量)的方差4. F与R2的关系: 这两个统计量同方向变动。也就是说如果模型对样本有较高的拟合优度,则一般F检验都能通过。5. 最小样本容量:样本容量必须不少于模型中解释变量的数目(包括常数项)6.7. 经常听到“如果给定解释变量值,根据模型就可以得到被解释变量的预测值”答:这是不科学的,也是计量经济学模型无法达到的。如果一定要给出一个具体的预测值,那么他的置信度则为0,如果一定要回答以100%的置信度处在什么区间中,那么这个区间是无穷8. 化多元非线性回归模型为线性的方法:直接置换、函数变换(取对数)9.三、 异方差、序列相关、多重共线1 异方差性:即对于不同的样本点i ,随机误差项的方差不再是常数2 产生原因:不同样本点上解释变量以外的其他因素差异较大3 异方差一般可归结为三种类型:(1)单调递增型:随Xi的增大而增大;(2)单调递减型:随Xi的增大而减小;(3)复杂型:与Xi的变化呈复杂形式。4 存在异方差仍用OLS估计的后果:1) 参数估计量非有效2) 变量的显著性检验失去意义3) 模型的预测失效5 异方差性检验方法的共同思路:检验异方差性,也就是检验随机误差项的方差与解释变量观测值之间的相关性及其相关的“形式”6 异方差的检验方法:1) OLS2) 图示检验法:X-Y、X-e2散点图3) 戈里瑟检验与帕克检验4) G-Q检验:G-Q检验以F检验为基础,适用于样本容量较大、异方差递增或递减的情况。先将样本一分为二,对子样本和子样本分别作回归,然后利用两个子样本的残差之比构造统计量进行异方差检验。由于该统计量服从F分布,因此假如存在递增的异方差,则F远大于1;反之就会等于1(同方差)、或小于1(递减方差)。7 解决异方差加权最小二乘法:是对原模型加权,使之变成一个新的不存在异方差性的模型,然后采用普通最小二乘法估计其参数。加权最小二乘法思想:就是对加了权重的残差平方和实施OLS法:对较小的残差平方ei2赋予较大的权数;对较大的残差平方ei2赋予较小的权数。8 加权最小二乘法具体步骤:加权最小二乘法的关键:寻找适当的权,计寻找模型中随机干扰项的方差与解释变量间的适当的函数形式。9 序列相关性:即对于不同的样本点,随机误差项之间不再是不相关的,而是存在某种相关性10 一半经验告诉我们,对于采用时间序列数据做样本的计量经济学问题,由于在不同样本点上解释变量以外的其他因素在时间上的连续性,带来他们对被解释变量的影响的连续性,所以往往存在序列相关性。11 自相关表达形式: :被称为自协方差系数或一阶自相关系数12 存在序列相关仍用OLS估计的后果:1) 参数估计量非有效(仍无偏)2) 变量的显著性检验失去意义3) 模型的预测功能失效13 序列相关性的检验方法1) 普通最小二乘法2) 图示法(残差的变化图)3) 回归检验法4) D-W检验法若 0D.W.dL 则存在正自相关 dLD.W.dU 不能确定 dUD.W.4-dU 无自相关 4-dUD.W.4-dL 不能确定 4-dLD.W.4 存在负自相关缺陷:存在两个不能确定的DW值区域; 无法检验存在滞后被解释变量的模型14 序列相关产生的原因:1) 经济变量固有的惯性2) 模型设定误差:模型中遗漏了显著的变量或者引用了不正确的函数形式3) 数据“编造”15 如何补救序列相关:1) 广义最小二乘法2) 广义差分法:可以克服所有类型的序列相关带来的问题3) 随机误差相关系数的估计科克伦奥科特 迭代法4) 应用软件中的广义差分法16 基本假定违背:不满足基本假定的情况1) 随机干扰项序列存在异方差性2) 随机干扰项序列存在序列相关性3) 解释变量之间存在多重共线性4) 解释变量是随机变量且与随机干扰项相关17 计量经济学检验:在进行计量经济学模型的回归分析时,必须对所研究对象是否满足普通最小二乘法的基本假定进行检验,及检验是否存在一种或多种违背基本假定的情况。18 多重共线性:如果某两个或多个解释变量之间出现了相关性,则称为多重共线性。分为完全共线性、近似共线性、交互相关。19 出线多重共线性的原因:1) 经济变量相关的共同趋势2) 滞后变量的引入3) 样本资料的限制20 存在多重共线性仍用OLS估计的后果1) 完全共线性下的参数估计量不存在2) 近似共线性下普通最小二乘法参数估计量的方差变大3) 参数估计量的经济含义不合理:模型中出现经济意义明显不合理的情况,应先考虑多重共线性。4) 变量的显著性检验和模型的预测功能失去意义21 多重共线性的检验:1) 对两个解释变量的模型采用简单相关系数法,r接近1存在较强的多重共线性2) 对多个解释变量的模型,采用综合统计检验法22 克服多重共线性的方法:1) 排除引起共线性的变量2) 差分法23 随机解释变量:存在一个或多个随机变量作为解释变量的模型24 不同情况的随机解释变量:1) 随机解释变量与随机干扰项独立:无偏一致2) 随机解释变量与随机干扰项同期无关但异期相关:有偏一致3) 随机解释变量与随机干扰项同期相关:有偏非一致25 工具变量法:在模型估计过程中被作为工具使用,以替代与随机干扰项相关的随机解释变量,是克服解释变量与随机干扰项相关影响的一种参数估计方法。26 工具变量法须满足的条件:1) 与所替代的随机解释变量高
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工业废水处理实验设计与效果评估
- 工业机器人技术在教学与培训中的应用
- 工业控制系统数据安全防护
- 工业污染控制与绿色生产模式
- 工业机器人产品技术介绍与市场前景
- 工业污染防治的科技创新方案
- 工业节能与绿色制造技术探讨
- 工业设计中的创新技术与设计理念研究
- 工业设计与智能产品开发策略探讨
- 工业遗存建筑的再生利用研究
- 消化道穿孔患者的护理课件
- 作物栽培学智慧树知到期末考试答案章节答案2024年中国农业大学
- 汽车修理厂应急预案汽修厂安全生产事故应急救援综合预案2019-2020新标准完整版实施文件
- 建筑智能化系统工程挂靠协议
- 司法鉴定的奥秘智慧树知到期末考试答案2024年
- 2024春期国开电大专本科《教育学》在线形考 (形考论坛4)试题及答案
- MOOC 高速铁路运营与维护-西南交通大学 中国大学慕课答案
- 11-轮藻植物门课件
- (2024年)健康评估教学教案心电图检查教案
- 方法模型:展开图、还原立体图形
- 2023年广东省中考生物试卷(含答案)
评论
0/150
提交评论