南湖学院课程设计封面(模版)(1).doc_第1页
南湖学院课程设计封面(模版)(1).doc_第2页
南湖学院课程设计封面(模版)(1).doc_第3页
南湖学院课程设计封面(模版)(1).doc_第4页
南湖学院课程设计封面(模版)(1).doc_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

南 湖 学 院应用电子系统分析与设计课程设计报告课题:数字温度计专 业 : 电子信息工程 班 级 : N电信08-1F 姓 名 : 米乾坤 唐小明 彭旭 学 号 : 24082202012 24082200041 24082200021 指导教师: 管 琼 日 期: 2011.12.22 1 绪 论随着科技发展人们生活水平的不断提高,单片机在电子产品中应用越来越广泛。在很多电子产品中用到温度检测和温度控制,使得人们对它的要求越来越高,所以要为现代人工作、科研、生活提供更好的更方便的设施就需要从单片机技术入手,一切向着数字化控制,智能化控制方向发展。 现代社会对各种信息参数的准确度和精确度的要求都有了几何级的增长,尤其是温度传感器技术,在我国各领域已经引用的非常广泛,可以说是渗透到社会的每一个领域,人民的生活与环境的温度息息相关,在工业生产过程中需要实时测量温度,在农业生产中也离不开温度的测量,因此研究温度的测量方法和装置具有重要的意义。在我们日常生活及各种生产中,经常要用到温度的检测及控制,传统的测温元件有热电偶和热电阻。而热电偶和热电阻测出的一般都是电压,再转换成对应的温度,需要比较多的外部硬件支持。其缺点如下:1 硬件电路复杂;2 软件调试复杂;3 制作成本高。而且传统的温度计也有反应速度慢、读数麻烦、测量精度不高、误差大等缺点而本文将介绍智能集成温度传感器DS18B20的结构特征及控制方法,并对以此传感器,89C52单片机为控制器构成的数字温度测量装置的工作原理及程序设计作了详细的介绍。与传统的温度计相比,其具有读数方便,测温范围广,测温准确,输出温度采用数字显示,易于实现。主要用于对测温要求比较准确的场所,或科研实验室使用。该设计控制器使用ATMEL公司的STC89C52单片机,测温传感器使用DALLAS公司DS18B20,用液晶来实现温度显示。2 数字温度计的基本原理本设计主要是介绍了单片机控制下的温度检测系统,详细介绍了其硬件和软件设计,并对其各功能模块做了详细介绍,其主要功能和指标如下:利用温度传感器(DS18B20)测量某一点环境温度测量范围为-55125,精度为0.5用液晶进行实际温度值显示采用STC89C52单片机P3 .7口控制温度传感器DS18B20的温度测量,以四位数码管形式输出测量温度,原理图如下图1.1所示:图1.1 DS18B20与单片机接口原理图采用数字温度芯片DS18B20 测量温度,输出信号全数字化。便于单片机处理及控制,省去传统的测温方法的很多外围电路。DS18B20 的最大特点之一采用了单总线的数据传输,由数字温度计DS18B20和微控制器STC89C52构成的温度测量装置,它直接输出温度的数字信号,可直接与计算机连接。这样,测温系统的结构就比较简单,体积也不大。采用51 单片机控制,软件编程的自由度大,可通过编程实现各种各样的算术算法和逻辑控制,而且体积小,硬件实现简单,安装方便。既可以单独对多DS18B20控制工作,还可以与PC 机通信上传数据,另外STC89C52 在工业控制上也有着广泛的应用,编程技术及外围功能电路的配合使用都很成熟。 2.1 单片机STC89C52STC89C52 是一种低功耗、高性能CMOS8位微控制器,具有8K在系统可编程Flash 存储器。使用Atmel 公司高密度非 易失性存储器技术制造,与工业80C51 产品指令和引脚完 全兼容。片上Flash允许程序存储器在系统可编程,亦适于常规编程器。在单芯片上,拥有灵巧的8 位CPU 和在系统 可编程Flash,使得STC89S52为众多嵌入式控制应用系统提 供高灵活、超有效的解决方案。STC89S52具有以下标准功能:89C52具有一个数据指针DPTR8k字节Flash,256字节RAM, 32 位I/O 口线.2.1.1 STC89C52引脚功能P0 口:P0口是一个8位漏极开路的双向I/O口。作为输出口,每位能驱动8个TTL逻 辑电平。对P0端口写“1”时,引脚用作高阻抗输入。 当访问外部程序和数据存储器时,P0口也被作为低8位地址/数据复用。在这种模式下,P0具有内部上拉电阻。在flash编程时,P0口也用来接收指令字节;在程序校验时,输出指令字节。程序校验时,需要外部上拉电阻。 P1 口:P1口是一个具有内部上拉电阻的8 位双向I/O 口,p1输出缓冲器能驱动4个TTL逻辑电平。对P1端口写“1”时,内部上拉电阻把端口拉高,此时可以作为输入口使用。作为输入使用时,被外部拉低的引脚由于内部电阻的原因,将输出电流(IIL)。此外,P1.0和P1.2分别作定时器/计数器2的外部计数输入(P1.0/T2)和时器/计数器2的触发输入(P1.1/T2EX)。具体如下所示: 在flash编程和校验时,P1口接收低8位地址字节。 引脚号第二功能 P1.0 T2(定时器/计数器T2的外部计数输入),时钟输出 P1.1 T2EX(定时器/计数器T2的捕捉/重载触发信号和方向控制) P1.5 MOSI(在系统编程用) P1.6 MISO(在系统编程用) P1.7 SCK(在系统编程用) P2口:P2口是一个具有内部上拉电阻的8位双向I/O 口,P2输出缓冲器能驱动4个TTL逻辑电平。对P2端口写“1”时,内部上拉电阻把端口拉高,此时可以作为输入口使用。作为输入使用时,被外部拉低的引脚由于内部电阻的原因,将输出电流(IIL)。 在访问外部程序存储器或用16位地址读取外部数据存储器(例如执行MOVX DPTR)时,P2口送出高八位地址。在这种应用中,P2口使用很强的内部上拉发送1。在使用8位地址(如MOVX RI)访问外部数据存储器时,P2口输出P2锁存器的内容。在flash编程和校验时,P2口也接收高8位地址字节和一些控制信号。 P3 口:P3 口是一个具有内部上拉电阻的8 位双向I/O 口,p2 输出缓冲器能驱动4 个TTL 逻辑电平。对P3 端口写“1”时,内部上拉电阻把端口拉高,此时可以作为输入口使用。作为输入使用时,被外部拉低的引脚由于内部电阻的原因,将输出电流(IIL)。 P3口亦作为STC89C52特殊功能(第二功能)使用,如下所示。 在flash编程和校验时,P3口也接收一些控制信号。 端口引脚 第二功能P3.0 RXD(串行输入口)P3.1 TXD(串行输出口)P3.2 INTO(外中断0)P3.3 INT1(外中断1)P3.4 TO(定时/计数器0)P3.5 T1(定时/计数器1)P3.6 WR(外部数据存储器写选通)P3.7 RD(外部数据存储器读选通)此外,P3口还接收一些用于FLASH闪存编程和程序校验的控制信号。RST复位输入。当振荡器工作时,RST引脚出现两个机器周期以上高电平将是单片机复位。ALE/PROG当访问外部程序存储器或数据存储器时,ALE(地址锁存允许)输出脉冲用于锁存地址的低8位字节。一般情况下,ALE仍以时钟振荡频率的1/6输出固定的脉冲信号,因此它可对外输出时钟或用于定时目的。要注意的是:每当访问外部数据存储器时将跳过一个ALE脉冲。对FLASH存储器编程期间,该引脚还用于输入编程脉冲(PROG)。如有必要,可通过对特殊功能寄存器(SFR)区中的8EH单元的D0位置位,可禁止ALE操作。该位置位后,只有一条MOVX和MOVC指令才能将ALE激活。此外,该引脚会被微弱拉高,单片机执行外部程序时,应设置ALE禁止位无效。PSEN程序储存允许(PSEN)输出是外部程序存储器的读选通信号,当ST89C52由外部程序存储器取指令(或数据)时,每个机器周期两次PSEN有效,即输出两个脉冲,在此期间,当访问外部数据存储器,将跳过两次PSEN信号。EA/VPP外部访问允许,欲使CPU仅访问外部程序存储器(地址为0000H-FFFFH),EA端必须保持低电平(接地)。需注意的是:如果加密位LB1被编程,复位时内部会锁存EA端状态。如EA端为高电平(接Vcc端),CPU则执行内部程序存储器的指令。FLASH存储器编程时,该引脚加上+12V的编程允许电源Vpp,当然这必须是该器件是使用12V编程电压Vpp2.2 温度传感器DS18B20DALLAS 最新单线数字温度传感器DS18B20是一种新型的“一线器件”,其体积更小、更适用于多种场合、且适用电压更宽、更经济。DALLAS 半导体公司的数字化温度传感器DS18B20是世界上第一片支持“一线总线”接口的温度传感器。温度测量范围为-55+125 摄氏度,可编程为9位12 位转换精度,测温分辨率可达0.0625摄氏度,分辨率设定参数以及用户设定的报警温度存储在EEPROM 中,掉电后依然保存。被测温度用符号扩展的16位数字量方式串行输出;其工作电源既可以在远端引入,也可以采用寄生电源方式产生;多个DS18B20可以并联到3 根或2 根线上,CPU只需一根端口线就能与诸多DS18B20 通信,占用微处理器的端口较少,可节省大量的引线和逻辑电路。因此用它来组成一个测温系统,具有线路简单,在一根通信线,可以挂很多这样的数字温度计,十分方便。DS18B20 的性能特点如下:独特的单线接口方式,DS18B20在与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通讯DS18B20支持多点组网功能,多个DS18B20可以并联在唯一的三线上,实现组网多点测温DS18B20在使用中不需要任何外围元件,全部传感元件及转换电路集成在形如一只三极管的集成电路内适应电压范围更宽,电压范围:3.05.5V,在寄生电源方式下可由数据线供电温范围55125,在-10+85时精度为0.5零待机功耗可编程的分辨率为912位,对应的可分辨温度分别为0.5、0.25、0.125和0.0625,可实现高精度测温在9位分辨率时最多在93.75ms内把温度转换为数字,12位分辨率时最多在750ms内把温度值转换为数字,速度更快. .2.1 DS18B20注意事项DS18B20 虽然具有测温系统简单、测温精度高、连接方便、占用口线少等优点,但在实际应用中也应注意以下几方面的问题:DS18B20 从测温结束到将温度值转换成数字量需要一定的转换时间,这是必须保证的,不然会出现转换错误的现象,使温度输出总是显示85。在实际使用中发现,应使电源电压保持在5V 左右,若电源电压过低,会使所测得的温度精度降低。较小果。在使用PL/M、C等高级语言进行的硬件开销需要相对复杂的软件进行补偿,由于DS1820与微处理器间采用串行数据传送,因此,在对DS1820进行读写编程时,必须严格的保证读写时序,否则将无法读取测温结系统程序设计时,对DS1820操作部分最好采用汇编语言实现。在DS18B20的有关资料中均未提及单总线上所挂DS18B20 数量问题,容易使人误认为可以挂任意多个DS18B20,在实际应用中并非如此,当单总线上所挂DS18B20 超过8 个时,就需要解决微处理器的总线驱动问题,这一点在进行多点测温系统设计时要加以注意。在DS18B20测温程序设计中,向DS18B20 发出温度转换命令后,程序总要等待DS18B20的返回信号,一旦某个DS18B20 接触不好或断线,当程序读该DS18B20 时,将没有返回信号,程序进入死循环,这一点在进行DS18B20硬件连接和软件设计时也要给予一定的重视。2.2.2 DS18B20 内部结图为DS1820的内部框图,它主要包括寄生电源、温度传感器、64位激光ROM单线接口、存放中间数据的高速暂存器(内含便笺式RAM),用于存储用户设定的温度上下限值的TH和TL触发器存储与控制逻辑、8位循环冗余校验码(CRC)发生器等七部分。DS18B20采用3脚PR35 封装或8脚SOIC封装,其内部结构框图如图 2.3所示图 2.3 DS18B20内部结构框图2.2.3 DS18B20测温原理DS18B20的测温原理如图2所示,图中低温度系数晶振的振荡频率受温度的影响很小用于产生固定频率的脉冲信号送给减法计数器1,高温度系数晶振随温度变化其震荡频率明显改变,所产生的信号作为减法计数器2的脉冲输入,图中还隐含着计数门,当计数门打开时,DS18B20就对低温度系数振荡器产生的时钟脉冲后进行计数,进而完成温度测量.计数门的开启时间由高温度系数振荡器来决定,每次测量前,首先将-55 所对应的基数分别置入减法计数器1和温度寄存器中,减法计数器1和温度寄存器被预置在-55 所对应的一个基数值。减法计数器1对低温度系数晶振产生的脉冲信号进行减法计数,当减法计数器1的预置值减到0时温度寄存器的值将加1,减法计数器 1的预置将重新被装入,减法计数器1重新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到减法计数器2计数到0时,停止温度寄存器值的累加,此时温度寄存器中的数值即为所测温图2中的斜率累加器用于补偿和修正测温过程中的非线性其输出用,于修正减法计数器的预置值,只要计数门仍未关闭就重复上述过程,直至温度寄存器值达到被测温度值,这就是DS18B20的测温原理。另外,由于DS18B20单线通信功能是分时完成的,他有严格的时隙概念,因此读写时序很重要。系统对DS18B20的各种操作必须按协议进行。操作协议为:初始化DS18B20(发复位脉冲)发ROM功能命令发存储器操作命令处理数据。图2.5 DS18B20测温原理图在正常测温情况下,DS1820的测温分辨力为0.5,可采用下述方法获得高分辨率的温度测量结果:首先用DS1820提供的读暂存器指令(BEH)读出以0.5为分辨率的温度测量结果,然后切去测量结果中的最低有效位(LSB),得到所测实际温度的整数部分Tz,然后再用BEH指令取计数器1的计数剩余值Cs和每度计数值CD。3 数字温度计的硬件设计温度计电路设计原理图如图3.1所示,控制器使用单片机AT89S52,温度计传感器使用DS18B20,用液晶实现温度显示。本温度计大体分三个工作过程。首先,由DS18B20温度传感器芯片测量当前的温度,并将结果送入单片机。然后,通过STC89C52单片机芯片对送来的测量温度读数进行计算和转换,井将此结果送入液晶显示模块。最后,SMC1602A芯片将送来的值显示于显示屏上。由图1可看到,本电路主要由DS18820温度传感器芯片、SMCl602A液晶显示模块芯片和STC89C52单片机芯片组成。其中,DS18B20温度传感器芯片采用“一线制”与单片机相连,它独立地完成温度测量以及将温度测量结果送到单片机的工作。图 3.1 温度计电路设计原理图3.1 主控制器单片机STC89S52具有低电压供电和小体积等特点,两个端口刚好满足电路系统的设计需要,很合适携手特式产品的使用。主机控制DS18B20完成温度转换必须经过三个步骤:初始化、ROM操作指令、存储器操作指令。必须先启动DS18B20开始转换,再读出温度转换值。3.2 显示电路显示电路采用SMCI602A液晶显示模块芯片该芯片可显示162个字符,比以前的七段数码管LED显示器在显示字符的数量上要多得多。另外,由于SMCl602芯片编程比较简单,界面直观,因此更加易于使用者操作和观测。3.3 温度检测电路DS18B20 最大的特点是单总线数据传输方式,DS18B20 的数据I/O 均由同一条线来完成。DS18B20 的电源供电方式有2 种: 外部供电方式和寄生电源方式。工作于寄生电源方式时, VDD 和GND 均接地, 他在需要远程温度探测和空间受限的场合特别有用, 原理是当1 W ire 总线的信号线DQ 为高电平时, 窃取信号能量给DS18B20 供电, 同时一部分能量给内部电容充电, 当DQ为低电平时释放能量为DS18B20 供电。但寄生电源方式需要强上拉电路, 软件控制变得复杂(特别是在完成温度转换和拷贝数据到E2PROM 时) , 同时芯片的性能也有所降低。因此, 在条件允许的场合, 尽量采用外供电方式。无论是内部寄生电源还是外部供电,I/O口线要接5K左右的上拉电。在这里采用前者方式供电。4 软件设计整个系统的功能是由硬件电路配合软件来实现的,当硬件基本定型后,软件的功能也就基本定下来了。从软件的功能不同可分为两大类:一是监控软件(主程序),它是整个控制系统的核心,专门用来协调各执行模块和操作者的关系。二是执行软件(子程序),它是用来完成各种实质性的功能如测量、计算、显示、通讯等。每一个执行软件也就是一个小的功能执行模块。这里将各执行模块一一列出,并为每一个执行模块进行功能定义和接口定义。各执行模块规划好后,就可以规划监控程序了。首先要根据系统的总体功能选择一种最合适的监控程序结构,然后根据实时性的要求,合理地安排监控软件和各执行模块之间地调度关系。4.1主程序模块主程序需要调用子程序,分别为数码管显示程序,温度测试及处理子程序,。各模块程序功能如下:数码管显示程序:向数码的显示送数,控制系统的显示部分。温度测试及处理程序:对温度芯片送过来的数据进行处理,进行判断和显示程序如下:#include #include #define uchar unsigned char#define uint unsigned intvoid Delay1us(uchar i);/延时1usuint ReadTemp_DS18B20(); void Led_Display(uint data1);/数码管显示参数uchar code LedDisplay = /段码控制0x3f,0x06,0x9b,0x8f,0xa6,0xad,0xbd,0x07,0xbf,0xaf ; uchar code LedDisplay1 = /位选控制 0xf7,0xfb,0xfd,0xfe ; /*函数名:Led_Display(uint data1,uint data2)*功 能:数码管显示两个变量*输 入: uint data1 变量 uint data2变量*返 回:void*/void Led_Display(uint data1)uint LedOut4; /变量定义uchar i;LedOut0 = LedDisplaydata1/1000; /千位 LedOut1 = LedDisplaydata1%1000/100;/百位 LedOut2 = LedDisplaydata1%100/10|0x40; /十位 LedOut3 = LedDisplaydata1%10; /个位 for( i=0; i4; i+) P2 = LedOuti;/段选 P1 = LedDisplay1i; /使用查表法进行位选 Delay1us(100); /扫描间隔时间 太长会数码管会有闪烁感P2 = 0x00; void main() uint Temp;while(1) Temp = ReadTemp_DS18B20();/读温度Led_Display(Temp);4.2 温度检测模块单总线DS18B20驱动程序如下;#include #include #define uint unsigned int#define uchar unsigned charsbit DQ=P14; /数据传输线接单片机的相应的引脚 void Delay1us(uint i); /延时函数 void Init_DS18B20(); /DS18B20初始化uchar Readbyte_DS18B20(); / 从DS18B20读字节void Writebyte_DS18B20(uchar dat); /从DS18B20写字节uint ReadTemp_DS18B20(); /读取DS18B20的温度uchar minus_Flag; /符号标志 1 表示读取负温度 0 表示读取正温度char setTempH,setTempL; /报警温度上下限值/*函数名:Delay1us(uint i)*功 能:延时 i * 1us *输 入: i:延时参数*返 回:void*备 注:此延时函数针对的是12Mhz的晶振Delay1us(0):延时518us 误差:518-2*256=6Delay1us(1):延时7us (原帖写5us是错的)Delay1us(10):延时25us 误差:25-20=5Delay1us(20):延时45us 误差:45-40=5Delay1us(100):延时205us 误差:205-200=5Delay1us(200):延时405us 误差:405-400=5*/void Delay1us(uint i)while(-i);/*函数名:Init_DS18B20()*功 能:初始化 DDS18B20 *输 入:void*返 回:void*/void Init_DS18B20() DQ=1; /DQ先置高 Delay1us(8); /延时 DQ=0; /发送复位脉冲 Delay1us(250); /延时(480us) DQ=1; /拉高数据线 Delay1us(20); /等待(1560us) /*函数名:Readbyte_DS18B20() *功 能:向DS18B20 读一个字节 *输 入:void*返 回:uchar dat*/uchar Readbyte_DS18B20() uchar i=0; uchar dat=0; for (i=8;i0;i-) DQ=0;_nop_(); dat=1; DQ=1; if(DQ) dat|=0x80; Delay1us(10); return dat;/*函数名:Writebyte_DS18B20(uchar dat)*功 能:向DS18B20 写一个字节 *输 入:uchar dat*返 回:void*/void Writebyte_DS18B20(uchar dat) uchar i=0; for(i=8;i0;i-) DQ=0;_nop_(); DQ=dat&0x01;Delay1us(10);DQ=1;dat=1;Delay1us(1);/*函数名:ReadTemperature_DS18B20()*功 能:读取DS18B20 的温度值 *输 入:void*返 回:uint temperature*/u

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论