数学第二轮专题复习第二部分 专题九极限、导数解答题的解法.ppt_第1页
数学第二轮专题复习第二部分 专题九极限、导数解答题的解法.ppt_第2页
数学第二轮专题复习第二部分 专题九极限、导数解答题的解法.ppt_第3页
数学第二轮专题复习第二部分 专题九极限、导数解答题的解法.ppt_第4页
数学第二轮专题复习第二部分 专题九极限、导数解答题的解法.ppt_第5页
已阅读5页,还剩27页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题九极限 导数解答题的解法 数学第二轮专题复习第二部分 应试策略 考题剖析 试题特点 极限 导数解答题的解法 03 06 11 1 近三年高考各试卷极限与导数考查情况统计2006年高考各地的18套试卷中 有14道导数题 其中考查求导法则的有5道 考查极限的有5道 考查单调性的有8道 考查极值的有5道 与不等式综合的有5道 与函数综合的有6道 2007年高考各地的19套试卷中 每卷都涉及到导数问题 有7道涉及到导数与不等式的综合 有15道涉及到函数 其中4道还涉及到函数的应用需用导数来解决 有4道涉及到数列 主要是考导数解决函数的极值和单调性问题 在这些试卷中尤以辽宁卷 湖南卷对导数极限的考查要求较高 辽宁有3道试题涉及到导数 而且是综合题 一道是函数 数列 极限 导数综合 一道是函数 单调性 不等式 导数的综合 一道是函数应用 概率 导数综合 由此可见 对导数工具性的考查在增强 对导数综合运用要求在加强 试题特点 返回目录 极限 导数解答题的解法 2 主要特点 1 极限在初等数学与高等数学之间起着重要的衔接作用 是从初等数学的思维方式到高等数学的思维方式的质的转变 因此在重点考查思维方法的高考命题中常把极限作为最好的命题素材之一 2 导数是中学选修内容中最为重要的内容 导数为解决函数问题 曲线问题提供了一般性的方法 由于导数可与函数 不等式等许多知识进行整合 有利于在 知识网络交汇点 处命题 合理设计综合多个知识点的试题 考查分类整合 数形结合等数学思想方法 因此 近几年来加大了导数的考查力度 主要有如下几方面 试题特点 极限 导数解答题的解法 返回目录 应用导数求函数的单调区间 或判定函数的单调性 应用导数求函数的极值与最值 应用导数解决实际问题 应用导数解决有关不等式问题 3 重视有限与无限思想的考查 客观世界是有限与无限的统一体 我们既可以通过有限来把握无限 也可以借助无限来确定有限 即 从与对立面的统一中去把握对立面 数学归纳法 数列极限 函数极限等都是由有限把握无限的极好例证 随着高中数学课程改革的逐步深入 对有限与无限思想的考查力度会不断加大 这是高考命题的一个新趋势 试题特点 极限 导数解答题的解法 返回目录 应试策略 返回目录 1 求数列极限的基本方法是 通过适当的化简或变形 如求和 求积 有理化分子或分母 分子分母同除n的最高次幂或同除分子或分母中底数绝对值最大的幂等 将复杂数列极限问题转化为简单数列极限问题 再利用 0 k 0 或qn 0 q 1 等重要极限及四则运算法则 求出所求式的极限 解决数列的极限问题还应运用数列的有关知识与技能 注意结合直觉 联想 猜测及分类讨论等思维方法 应试策略 极限 导数解答题的解法 返回目录 2 函数极限是数列极限的拓广 延伸 函数极限与数列极限有类似的四则运算法则 求函数极限的基本思想也是转化 化归 实施转化时 可注意类比 借鉴求数列极限的一些方法与技能 3 求导数有两种方法 一是利用导数定义 二是利用基本函数的导数公式 四则运算法则及复合函数的求导法则求导 常用后一种方法 极限 导数解答题的解法 应试策略 返回目录 4 要重视导数在研究函数问题或实际问题时的应用 1 求可导函数单调区间的方法 确定函数f x 的定义域 求方程f x 0的解 这些解和f x 的间断点把定义域分成若干区间 研究各小区间上f x 的符号 f x 0时 该区间为增区间 反之则为减区间 应试策略 极限 导数解答题的解法 返回目录 2 求函数极值点时 可能出现极值的点是f x 0或使f x 不存在的点 注意f x 0不是有极值的充分条件 3 连续函数在闭区间上必有最值 求最值时不要忘记极值与端点处的函数值的大小比较 4 解最值应用题时 要认真审题 分析各量的关系 列出函数y f x 并确定定义域 然后按照步骤求函数的最值 最后根据实际意义作答 若f x 在定义域区间上只有一个极值点 则这个极值点一定是最值点 应试策略 极限 导数解答题的解法 返回目录 考题剖析 返回目录 1 设首项为1 公比为q q 0 的等比数列的前n项和为sn 又tn n 1 2 3 求tn 考题剖析 极限 导数解答题的解法 解析 当q 1时 sn n tn tn 1 当q 1时 sn tn 当0 q 1时 qn 0 tn 1 当q 1时 tn 返回目录 综上所述 tn 考题剖析 极限 导数解答题的解法 点评 本题考查了等比数列前n项和及数列极限的求法 考查了分类与整合的思想方法 等比数列求和公式限制在q 1的条件下 此题没有指出q 1 故要对q进行讨论 在求tn时 必须求qn 只有当 q 1时有极限 而此题q 0 故需对q进行讨论 返回目录 考题剖析 极限 导数解答题的解法 2 1 已知 n b 求a b的值 2 已知 n 求m n的值 解析 1 原式 当且仅当a 3时 有极限 b 故所求a b的值为a 3 b 返回目录 考题剖析 极限 导数解答题的解法 2 n 可知x2 mx 2是含x 2的因式 x 2是方程x2 mx 2 0的根 代入求得m 3 n 1 点评 本例是求极限的逆思维 思路新颖 方法灵活 返回目录 考题剖析 极限 导数解答题的解法 3 2007 湖南张家界质检题 设a 0 f x x 1 ln2x 2alnx x 0 令f x xf x 讨论f x 在 0 内的单调性并求极值 求证 当x 1时 恒有x ln2x 2alnx 1 解析 根据求导法则有f x 1 x 0 故f x xf x x 2lnx 2a x 0 于是f x 1 x 0 列表如下 故知f x 在 0 2 内是减函数 在 2 内是增函数 所以 在x 2处取得极小值f 2 2 2ln2 2a 返回目录 考题剖析 极限 导数解答题的解法 证明 由a 0知 f x 的极小值f 2 2 2ln2 2a 0 于是由上表知 对一切x 0 恒有f x x f x 0 从而当x 0时 恒有f x 0 故f x 在 0 内单调增加 所以当x 1时 f x f 1 0 即x 1 ln2x 2alnx 0 故当x 1时 恒有x ln2x 2alnx 1 点评 本小题主要考查函数导数的概念与计算 利用导数研究函数的单调性 极值和证明不等式的方法 考查综合运用有关知识解决问题的能力 返回目录 考题剖析 极限 导数解答题的解法 4 已知函数f x ax3 bx2 3x 其图象在横坐标为 1的两点处的切线均与x轴平行 1 求函数f x 的解析式 2 对于区间 1 1 上任意两个自变量的值x1 x2 都有 f x1 f x2 k 试求k的最小值 3 若过点a 1 m m 2 可且仅可作曲线y f x 的一条切线 求实数m的取值范围 返回目录 考题剖析 极限 导数解答题的解法 解析 1 f x 3ax2 2bx 3 依题意 f 1 f 1 0即解得a 1 b 0 f x x3 3x 2 f x x3 3x f x 3x2 3 3 x 1 x 1 当 1 x 1时 f x 0 故f x 在区间 1 1 上为减函数 f x max f 1 2 f x min f 1 2 对于区间 1 1 上任意两个自变量的值x1 x2都有 f x1 f x2 f x max f x min 2 2 4 即 f x1 f x2 max 4 k 4 k的最小值为4 返回目录 考题剖析 极限 导数解答题的解法 3 f x 3x2 3 3 x 1 x 1 曲线方程为y x3 3x 点a 1 m 不在曲线上 设切点为m x0 y0 则点m的坐标满足y0 x30 3x0因f x0 3 x20 1 故切线的斜率为k 3 x20 1 kam 整理得2x30 3x20 m 3 0 注 也可以先写出切线方程 然后将点a的坐标代入得到左式 过点a 1 m 仅可作曲线的一条切线 关于x0方程2x30 3x20 m 3 0有且仅有一个实根 返回目录 考题剖析 极限 导数解答题的解法 设g x0 2x30 3x20 m 3 则g x0 6x20 6x0 令g x0 0得x0 1或x0 0 令g x0 0得0 x0 1 函数g x0 2x30 3x20 m 3在区间 0 和 1 为增函数 在 0 1 上为减函数 g x0 的极大 极小值点分别为x0 0 x0 1 g x 不是单调函数 关于x0方程2x30 3x20 m 3 0有且仅有一个实根的充要条件是 g x 极大 g 0 m 3 0 m 3或g x 极小 g 1 2 m 0 m 2故所求的实数a的取值范围是 m m 3或m 2 点评 只有深刻理解概念的本质 才能灵活应用概念解题 解决这类问题的关键是等价变形 返回目录 考题剖析 极限 导数解答题的解法 5 2007 成都市质检二 已知函数f x m r e 2 71828 是自然对数的底数 求函数f x 的极值 当x 0时 设f x 的反函数为f 1 x 对0 p q 试比较f q p f 1 q p 及f 1 q f 1 p 的大小 解析 当x 0时 f x ex 1在 0 上单调递增 且f x ex 1 0 当x 0时 f x x3 mx2 此时f x x2 2mx x x 2m 返回目录 考题剖析 极限 导数解答题的解法 1 若m 0时 f x x2 0 则f x x3在 0 上单调递增 且f x x3 0 又f 0 0 可知函数f x 在r上单调递增 无极值 2 当m 0 令f x x x 2m 0 x 0或x 2m 舍去 函数f x x3 mx2在 0 上单调递增 同理 函数f x 在r上单调递减 无极值 返回目录 考题剖析 极限 导数解答题的解法 3 若m 0 令f x x x 2m 0 x 0或x 2m 函数f x x3 mx2在 2m 上单调递增 在 2m 0 上单调递减 此时函数f x 在x 2m处取得极大值 f 2m m3 4m3 m3 0 又f x 在 0 上单调递增 故在x 0处取得极小值 f 0 0 综上可知 当m 0时 f x 的极大值为m3 极小值为0 当m 0时 f x 无极值 返回目录 考题剖析 极限 导数解答题的解法 当x 0时 设y f x ex 1y 1 exx ln y 1 f 1 x ln x 1 x 0 1 比较f q p 与f 1 q p 的大小 记g x f x f 1 x ex ln x 1 1 x 0 g x ex 在 0 上是单调递增函数 g x g 0 e0 0恒成立 函数g x 在 0 上单调递增 g x g 0 e0 ln 0 1 1 0 当0 p q时 有q p 0 g q p eq p ln q p 1 1 0 eq p 1 ln q p 1 即f q p f 1 q p 返回目录 考题剖析 极限 导数解答题的解法 2 比较f 1 q p 与f 1 q f 1 p 的大小 ln q p 1 ln q 1 ln p 1 ln q p 1 ln q 1 ln p 1 ln ln ln 0 p q 1 故ln 0 ln q p 1 ln q 1 ln p 1 f 1 q p f 1 q f 1 p 返回目录 考题剖析 极限 导数解答题的解法 注 也可用分析法或考察函数h x ln x p 1 ln x 1 ln p 1 x p 求导可知h x 在 p 上单调递增 h x h p 恒成立 而h p 0 h x 0在x p 上恒成立 q p h q 0恒成立 由 可知 当0 p q时 有f q p f 1 q p f 1 q f 1 p 点评 本题考查分段函数求极值 分类讨论的思想 函数的单调性 不等式等知识 考查学生的综合解决问题的能力 返回目录 考题剖析 极限 导数解答题的解法 6 2007 杭州市一模 已知一列非零向量an n n 满足 a1 10 5 an xn yn k xn 1 yn 1 xn 1 yn 1 n 2 其中k是非零常数 1 求数列 an 的通项公式 2 求向量an 1与an的夹角 n 2 3 当k 时 把a1 a2 an 中所有与a1共线的向量按原来的顺序排成一列 记为b1 b2 bn 令 b1 b2 bn o为坐标原点 求点列 bn 的极限点b的坐标 注 若点坐标为 tn sn 且tn t sn s 则称点b t s 为点列的极限点 返回目录 考题剖析 极限 导数解答题的解法 解析 1 an k k an 1 n 2 a1 5 an 是首项为5公比为 k 的等比数列 an 5 k n 1 返回目录 2 an an 1 k xn 1 yn 1 xn 1 yn 1 xn 1 yn 1 k xn 12 yn 12 k an 1 2 cos an an 1 当k 0时 an an 1 当k 0时 an an 1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论