全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.2 一元二次方程的解法课题 2.2 一元二次方程的解法教学目标知识与技能:让学生掌握一元二次方程求根公式的推导,会运用公式法解一元二次方程。过程与方法:1通过求根公式的推导,培养学生数学推理的严密性及严谨性2培养学生快速而准确的计算能力情感态度与价值观:1通过公式的引入,培养学生寻求简便方法的探索精神及创新意识2通过求根公式的推导,渗透分类的思想。重点求根公式的推导及用公式法解一元二次方程。难点对求根公式推导过程中依据的理论的深刻理解教学方法课型教具教学过程: 一、创设情境、导入新课 通过作业及练习深刻地体会到由配方法求方程的解有时计算起来很麻烦,每求一个一元二次方程的解,都要实施配方的步骤,进行较复杂的计算,这必然给方程的解的正确求出带来困难能不能寻求一个快速而准确地求出方程的解是亟待解决的问题。 二、合作交流、解读探究 如果这个一元二次方程是一般形式ax2+bx+c=0(a0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题 问题:已知ax2+bx+c=0(a0)且b2-4ac0,试推导它的两个根 x1=,x2= 分析:因为前面具体数字已做得很多,我们现在不妨把a、b、c也当成一个具体数字,根据上面的解题步骤就可以一直推下去 解:移项,得:ax2+bx=-c 二次项系数化为1,得x2+x=- 配方,得:x2+x+()2=-+()2 即(x+)2= b2-4ac0且4a20 0 直接开平方,得:x+= 即x= x1=,x2= 由上可知,一元二次方程ax2+bx+c=0(a0)的根由方程的系数a、b、c而定,因此: (1)解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当b-4ac0时,将a、b、c代入式子x=就得到方程的根 (2)这个式子叫做一元二次方程的求根公式 (3)利用求根公式解一元二次方程的方法叫公式法 (4)由求根公式可知,一元二次方程最多有两个实数根 例1用公式法解下列方程 (1)2x2-4x-1=0 (2)5x+2=3x2 (3)(x-2)(3x-5)=0 (4)4x2-3x+1=0 分析:用公式法解一元二次方程,首先应把它化为一般形式,然后代入公式即可 解:(1)a=2,b=-4,c=-1 b2-4ac=(-4)2-42(-1)=240 x= x1=,x2= (2)将方程化为一般形式 3x2-5x-2=0 a=3,b=-5,c=-2 b2-4ac=(-5)2-43(-2)=490 x= x1=2,x2=- (3)将方程化为一般形式 3x2-11x+9=0 a=3,b=-11,c=9 b2-4ac=(-11)2-439=130 x= x1=,x2= (3)a=4,b=-3,c=1 b2-4ac=(-3)2-441=-70 因为在实数范围内,负数不能开平方,所以方程无实数根三、巩固练习 教材P37 练习(1)、(2)(3)、(4) 四、应用拓展 例2某数学兴趣小组对关于x的方程(m+1)+(m-2)x-1=0提出了下列问题 (1)若使方程为一元二次方程,m是否存在?若存在,求出m并解此方程 (2)若使方程为一元二次方程m是否存在?若存在,请求出 你能解决这个问题吗? 分析:能(1)要使它为一元二次方程,必须满足m2+1=2,同时还要满足(m+1)0 (2)要使它为一元一次方程,必须满足:或或 解:(1)存在根据题意,得:m2+1=2 m2=1 m=1 当m=1时,m+1=1+1=20 当m=-1时,m+1=-1+1=0(不合题意,舍去) 当m=1时,方程为2x2-1-x=0 a=2,b=-1,c=-1 b2-4ac=(-1)2-42(-1)=1+8=9 x= x1=,x2=- 因此,该方程是一元二次方程时,m=1,两根x1=1,x2=- (2)存在根据题意,得:m2+1=1,m2=0,m=0 因为当m=0时,(m+1)+(m-2)=2m-1=-10 所以m=0满足题意 当m2+1=0,m不存在 当m+1=0,即m=-1时,m-2=-30 所以m=-1也满足题意 当m=0时,一元一次方程是x-2x-1=0, 解得:x=-1 当m=-1时,一元一次方程是-3x-1=0 解得x=- 因此,当m=0或-1时,该方程是一元一次方程,并且当m=0时,其根为x=-1;当m=-1时,其一元一次方程的根为x=- 五、归
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年海西州辅警招聘考试真题含答案详解(能力提升)
- 2025年自贡辅警协警招聘考试备考题库及完整答案详解1套
- 2025年菏泽辅警协警招聘考试真题带答案详解(完整版)
- 2025年烟台辅警招聘考试真题含答案详解(考试直接用)
- 2025年金华辅警招聘考试真题附答案详解(轻巧夺冠)
- 2025年鄂尔多斯辅警招聘考试题库含答案详解(培优a卷)
- 2025年茂名辅警招聘考试真题附答案详解(研优卷)
- 2025年湖南辅警协警招聘考试真题及答案详解(新)
- 2025年连云港辅警招聘考试真题含答案详解(a卷)
- 2025年黄石辅警招聘考试真题及答案详解(全优)
- 2025年艾梅乙培训试题(附答案)
- 安徽1号卷A10联盟2026届高三上学期11月期中质量检测物理(含答案)
- 2025年山东省济南市中考道德与法治试题真题(含答案详解)
- 2026年内蒙古商贸职业学院单招职业技能测试题库必考题
- 2025中国氢能产业链成本分析及绿氢制备技术突破研究报告
- 分销米代理合同范本
- 食品行业质量控制与追溯手册
- 高中历史期末中外对比考试题及答案
- 2025年川教版(2024)小学信息科技三年级(上册)教学设计及反思(附目录P118)
- 2023年中考语文备考之说明文阅读训练:《盲盒背后的“上瘾密码”》
- 肿瘤科专业组药物临床试验管理制度及操作规程GCP
评论
0/150
提交评论