




已阅读5页,还剩8页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
课题8.22消元_用加减法解二元一次方程组(第1课时)(预学案)课前使用编制:吴金平 审核:初一备课组【学习目标】:1 .理解什么是加减消元法;2. 掌握用加减消元法解二元一次方程组的一般步骤.能熟练运用加减法解二元一次方程组。 【自主学习】课本第94 - 96 页。知识梳理:1. 加减消元法:两个二元一次方程中同一未知数的系数_或_时,把这两个方程的两边分别_或_,就能消去这个未知数,得到一个一元一次方程,这种方法叫做_,简称_。2. 方程组中x的系数特点是_, 方程组中y的系数的特点是_,这两个方程组用_法解较简便.即学即练:1、用加减法解方程组 ,较简便的消元方法是:将两个方程_,由_ 可消去未知数_2、用加减法解方程组 3x - 4y=16 , 较简便的消元方法是:将两个方程5x - 4y=32 _,由_可消去未知数_ 3、解方程组(1) (2) 解:由,得_ 解:将x =_代入,得,y = _ 这个方程组的解为 x =_ y =_ 【心得体会】通过实践发现:当两个二元一次方程 中 同一未知数的系数_或_时,可以直接把这两个方程的两边分别_或_消去一个未知数,转化成一元一次方程求解。8.22消元_用加减法解二元一次方程组(第一课时)(导学案)课堂使用编制:吴金平 审核:初一备课组【课堂检测】1、 用加减法解下方程组 A. B. 2、说说下列解方程组的解题思路(1) (2) (3) 8x+3y = -2 4x+5y = -8 3.探究讨论(4) . 二.师生共析:(1)用加减消元法解二元一次方程组的基本思路仍然是“_”. (2)用加减法解二元一次方程组的一般步骤: 第一步:观察在所解的方程组中的两个方程,如果某个未知数的系数_ ,可以把这两个方程的两边分别相加,消去这个未知数;转化成_ 方程,从而先求出一个未知数的值,再把这个未知数的值回代入原方程中最_的一道,最后求出第二个未知数的值。如果未知数的系数相等,可以直接把两个方程的两边_,消去这个未知数再求解。 第二步:如果方程组中不存在某个未知数的系数的_相等,那么应选出一组系数比较简单的进行_, (选最小公倍数较小的一组系数),求出它们的最小公倍数,(如果一个系数是另一个系数的整数倍,该系数即为最小公倍数),然后将原方程组变形,使新方程组的这组系数的_相等(都等于原系数的最小公倍数),再加减消元.第三步:对于较复杂的二元一次方程组,应先_ (去分母,去括号,合并同类项等),通常要把每个方程整理成含未知数的项在方程的_边,常数项在方程的_边的形式,再作如上加减消元的考虑.三.创新:小小主考官 请你写出一个二元一次方程组(不用求解).四【课堂感悟】通过这节课的学习,我学会了:_最大的困惑是:_五【课后作业】1、已知方程组 ,用加减法消x的方法是_ ;用加减法消y的方法是_2、用加减消元法解方程组时,有以下四种结果,其中正确变形是( ) A只有(1)和(2) B只有(3)和(4) C只有(1)和(3) D只有(2)和(4)3、已知方程组的解是则m=_. n=_。4、关于x、y的二元一次方程的解为 x+y = 10, 求k的值5、解方程组(1) (2) (3) 8x+3y = -2 4x+5y = -8 教学设计分析课题8.2加减消元法解二元一次方程组学科数学学段第三学段(七九年级)年级七年级相关领域数与代数教材义务教育课程标准实验教科书数学 人民教育出版社 2017年 3月教学设计参与人员姓名单位联系方式设计者吴金平廉江市第一中课者吴金平廉江市第一中学指导者指导思想与理论依据课标指出:“教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。”因此,在教学过程中,要从学生已有的知识经验出发,为学生建立数学知识间的内在联系搭建平台,使学生产生学习加减消元法解方程组的的需求。教学背景分析教学内容:本节课选自人教版七年级下册第八章二元一次方程组第二节,解方程组的基本策略是“消元”,即逐步减少未知数的个数,使方程组化归为一元方程。加减法和代入法是解二元一次方程组的两种常用方法,此前学生已经认识了二元一次方程组,能够用代入法解二元一次方程组,对消元思想有了初步的认识。本节课是在学生已有知识经验的基础上,用另一种方法进行消元,是对二元一次方程组解法的进一步研究。学生情况:本节课的学习者是七年级第二学期的学生,他们已经能够熟练求解一元一次方程,并能用代入法解二元一次方程组,对消元的思想方法已具有一定的分析能力,此外大部分学生有自主学习的习惯,这为教师采用先学后教教学提供了必要的条件。教学方式:“启发探究式” 教学目标 1 .理解什么是加减消元法;2. 掌握用加减消元法解二元一次方程组的一般步骤; 会熟练运加减法解二元一次方程组; 3.在利用加减法解二元一次方程组的过程中,体会化归思想教学重点:能用加减法解二元一次方程组教学难点:能根据未知数系数的特点选择适当未知数进行加减消元教学过程问题与情境师生行为设计意图(一)回顾1、用代入法解二元一次方程组的一般步骤:(1)变形(2)代入(3)求解(4)再代(5)求解(6)总结 问题1:除了用代入法达到消元的目的外,你能找到其他的办法消元吗? 引出加减法2.把批改好的“预学案”发回给学生,点评“预学案”存在的问题。使用(导学案)一【课堂检测】1、用加减法解下方程组 (1) .(2) 2、解方程组(1) (2) (3) 8x+3y = -2 4x+5y = -8 继续出题(4)3、对于以上出现的方程组,我们再采用加减消元法解题的过程中应该注意什么问题?能总结一下吗? 个别提问学生回答 通过“预学案”得出结论:通过实践发现:当两个二元一次方程 中 同一未知 数 的系数相同 或 相 反时,可以直接把这两个方程的两边分别 相 减或相加 消 去一个未知数,转化成一元一次方程求解。教师提示,当遇到两个二元一次方程 中 同一未知 数 的系数既不相同 也不 相 反时,应该怎样消元?先让学生独立思考做6分钟,再小组讨论2分钟。以竞赛形式以小组为单位,每小组随机抽查一位同学快速批改,所得分数作为本小组的得分。选两个同学说说解题思路,并通过投影器分析解题过程。学以致用方法检验,提问学生说出消元思路,学生发表见解后,教师引导学生用加减消元法解方程组(),并板书解题过程.此题与前面的有何不同?有应该怎样解?抢答学生发表见解后,教师引导学生先化简整理,再用加减消元法解方程组(),并板书化简整理过程.在问题的引导下,学生各抒己见,思考后全班交流.总结步骤师生共析:(1)用加减消元法解二元一次方程组的基本思路仍然是“_”. (2)用加减法解二元一次方程组的一般步骤: 第一步:观察在所解的方程组中的两个方程,如果某个未知数的系数_ ,可以把这两个方程的两边分别相加,消去这个未知数;转化成_ 方程,从而先求出一个未知数的值,再把这个未知数的值回代入原方程中最_的一道,最后求出第二个未知数的值。如果未知数的系数相等,可以直接把两个方程的两边_,消去这个未知数再求解。 第二步:如果方程组中不存在某个未知数的系数的_相等,那么应选出一组系数比较简单的进行_, (选最小公倍数较小的一组系数),求出它们的最小公倍数,(如果一个系数是另一个系数的整数倍,该系数即为最小公倍数),然后将原方程组变形,使新方程组的这组系数的_相等(都等于原系数的最小公倍数),再加减消元. 第三步:对于较复杂的二元一次方程组,应先_ (去分母,去括号,合并同类项等),通常要把每个方程整理成含未知数的项在方程的_边,常数项在方程的_边的形式,再作如上加减消元的考虑.【 通过复习用代入法解二元一次方程组,使学生回顾代入的目的是消元,使二元一次方程组转化为一元一次方程,熟练代入法的一般步骤,同时引出加减消元法.发挥学生的自主学习能力,课本中一看就懂的不讲,直接总结。 通过让学生对习习题习题的巩固,掌握用加减消元法解二元一次方程组的基本思路。 通过此题,培养学生爱动脑筋的好习惯,通过抢答的形式,培养学生不甘落后的精神通过此环节使学生进一步理解加减消元法,培养学生的归纳概括能力和语言表达能力.(二) 小小主考官 请你写出一个二元一次方程组(不用求解).学生独立完成后与同桌交流,通过观察同一个未知数的系数之间的关系,判断同桌之间所写出的方程组在用加减法求解时步骤是否相同,并说明理由.学生按要求活动,教师巡视,并参与到学生的讨论中去.教学预想一:学生所写方程组中出现类似下面举出的方程组,此时教师要充分肯定出题同学的设计,并请全班同学讨论所举方程与方程()和方程()在哪些地方相似,哪些地方不同,由此会对求解过程有何影响.小小结:同一未知数的系数的绝对值之间存在倍分关系时,将绝对值较小的系数所在方程扩大一定倍数,使这个未知数的系数的绝对值变为相等,再加减法消元. 教学预想二:学生所编方程组出现无解或有无数多个解的情况,此时可引导学生想办法说明为什么会出现这种情况?比如,从同一未知数的系数分析,或编一道简单的实际问题来说明。在学习活动中角色的转变,能够调动学生的学习积极性,突出学生的主体地位,意在使学生进一步体会同一未知数系数的关系对加减消元法的影响。使学生体会此方程在解法上与方程()之间的转化关系,体现化归思想在解题过程中使学生进一步理解加减消元法,培养学生的观察能力,增强学生与他人交流的意识.此环节可使学生对二元一次方程组解的个数有初步体会,为今后进一步用函数观点研究二元一次方程组埋下伏笔.(三)课堂小结 1、同学们写出的方程组在解法上有什么特点?它们相互之间又有什么联系?2、加减法与代入法都是解二元一次方程组比较好的方法,请你再次谈一谈它们有什么区别和联系?同一未知数的系数:(1)绝对值相等符号相同-相减消元符号相反-相加消元(2)绝对值不等具有倍分关系-一个方程扩大一定倍数没有倍分关系-两个方程分别扩大一定倍数代入法加减法区别将一个方程中的未知数表示出来后代入另一个方程两个方程直接相减联系消元通过让学生小结,使学生对加减法解二元一次方程组有系统的认识,体会这两种情况之间的转化关系。将本节课所学知识纳入到已有知识系统,完善学生对二元一次方程组解法的认识。 (四)布置作业1、用加减法解下列方程组较简便的消元方法是:将两个方程_,消去未知数_2、已知方程组 ,用加减法消x的方法是_;用加减法消y的方法是_3、用加减消元法解方程组时,有以下四种结果,其中正确变形是( ) A只有(1)和(2) B只有(3)和(4) C只有(1)和(3) D只有(2)和(4)4、已知方程组的解是则m=_. n=_。5、关于x、y的二元一次方程的解为x+y=10,求k的值6、如果二元一次方程组的解是二元一次方程3x-5y-28=a的一个解,那么a的值是_7、解方程组(1) (2) (3): 通过课后练习,进一步巩固知识。学习效果评价设计1.结果性评价:2.过程性评价(含情感、态度及价值观):(1)参与活动的态度与表现。(2)认真听取他人意见并进行思考、分析、评价的表现程度。(3)积极发表个人观点和意见,严格用数学语言进行表达的表现程度。(4)合作交流的态度及能力表现程度。本节课,为较好地完成过程性评价目标,我设计了多个活动环节,让学生在活动中完成、达成过程与方法的教学目标。活动中95以上的同学很积极,但也有个别学生被动性较强,课后及今后的教学中我还要加大对这少部分同学的关注与指导。 本教学设计的特点本节课采用的是“先学后教”式的教学方法。通过设置一个“预学案”和“导学案”引出的问题,为学生建立数学知识间的内在联系搭建了平拍,从而真正产生学习加减消元法解方程组的的需求。使学生在老师的启发引导下,通过自主探究、合作交流、观察发现、归纳总结学习新知。在整节课的教学中,教师始终扮演学生学习的组织者、指导者和欣赏者的角色,鼓励学生积极参与数学活动,敢于探究、猜想,在学习过程中勇于表达自己的观点,使学生以一个探索者的身份加减法解二元一次方程组,从而使学生在知识、方法上有所收获。 加减消元法解二元一次方程组教学反思用加减消元法解二元一次方程组分两节设置,第一节利用预学案,要求学生在课前完成,预学案中主要设计加减消元法的基本概念和简单的方程组,主要考消元的思路以及相同未知数的系数相同或相反的题型, 学生通过预习可基本完成。上课时老师总结一下就可以,做到学生已经懂的没必要浪费时间。第二节利用导学案,开
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年农业农村行业农业物联网技术应用状况研究报告
- 2025年老年养护行业老年养护与老年服务研究报告
- 2025年互联网金融行业数字货币在金融行业的应用前景研究报告
- 2025年麻醉科麻醉后并发症处理模拟考试答案及解析
- 2025年急救医学实际操作技能模拟考试答案及解析
- 2025辽宁鞍山市铁西区事业单位面向社会招聘工作人员138人笔试模拟试题及答案解析
- 2025年山东大学齐鲁第二医院招聘(劳务派遣)笔试备考试题及答案解析
- 2025陕西省西安市新城区公益性岗位人员招聘(16人)笔试模拟试题及答案解析
- 2025年心理学在临床医学中的应用模拟考试答案及解析
- 2025四川雅安市雨城区卫生健康局考核招聘事业单位工作人员10人笔试模拟试题及答案解析
- 输变电工程质量通病防治手册
- 居民公约工作总结
- 骨科疾病的深度学习研究
- 绿植租摆服务投标方案(完整技术标)
- 矿山安全培训课件-地下矿山开采安全技术
- 汪小兰版有机化学答案全
- DB32∕T 3751-2020 公共建筑能源审计标准
- DB51T 2975-2022气凝胶复合保温隔热材料及系统通用技术条件
- 高中音乐《学会聆听音乐》第三课时《联想与想象》 课件
- 实验,双子叶植物根类药材的鉴定课件
- GB/T 40302-2021塑料立式软薄试样与小火焰源接触的燃烧性能测定
评论
0/150
提交评论