




已阅读5页,还剩20页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北13市州(14套)2012年中考数学试题分类解析汇编专题11:圆一、选择题1. (2012湖北黄石3分)如图所示,扇形AOB的圆心角为120,半径为2,则图中阴影部分的面积为【 】A. B. C. D. 【答案】A。【考点】扇形面积的计算,等腰三角形的性质,三角形内角和定理,垂径定理,勾股定理。【分析】过点O作ODAB,AOB=120,OA=2,。OD=OA=2=1,。,。故选A。2. (2012湖北黄石3分)如图所示,直线CD与线段AB为直径的圆相切于点D,并交BA的延长线于点C,且AB=2,AD=1,P点在切线CD上移动.当APB的度数最大时,则ABP的度数为【 】A. B. C. D. 【答案】B。【考点】切线的性质,三角形的外角性质,圆周角定理,锐角三角函数定义,特殊角的三角函数值。【分析】连接BD,直线CD与以线段AB为直径的圆相切于点D,ADB=90。当APB的度数最大时,点P和D重合,APB=90。AB=2,AD=1,。ABP=30。当APB的度数最大时,ABP的度数为30。故选B。3. (2012湖北天门、仙桃、潜江、江汉油田3分)如图,在RtABC中,C=90,A=30,AC=6cm,CDAB于D,以C为圆心,CD为半径画弧,交BC于E,则图中阴影部分的面积为【 】Acm2 Bcm2 Ccm2 Dcm2【答案】A。【考点】扇形面积的计算,解直角三角形。【分析】A=30,AC=6cm,CDAB,B=60,BCD=30,CD=3cm,BD=cm,。阴影部分的面积为:cm2。故选A。4. (2012湖北宜昌3分)已知O的半径为5,圆心O到直线l的距离为3,则反映直线l与O的位置关系的图形是【 】A B C D【答案】B。【考点】直线与圆的位置关系。1419956【分析】根据直线与圆的位置关系来判定:直线l和O相交dr;直线l和O相切d=r;直线l和O相离dr(d为直线与圆的距离,r为圆的半径)。因此,O的半径为5,圆心O到直线l的距离为3,53,即:dr,直线L与O的位置关系是相交。故选B。5. (2012湖北恩施3分)如图,两个同心圆的半径分别为4cm和5cm,大圆的一条弦AB与小圆相切,则弦AB的长为【 】A3cm B4cm C6cm D8cm【答案】C。【考点】切线的性质,勾股定理,垂径定理。【分析】如图,连接OC,AO,大圆的一条弦AB与小圆相切,OCAB。AC=BC=ABOA=5cm,OC=4cm,在RtAOC中,。AB=2AC=6(cm)。故选C。6. (2012湖北咸宁3分)如图,O的外切正六边形ABCDEF的边长为2,则图中阴影部分的面积为【 】ABCD【答案】A。【考点】正多边形和圆,多边形内角和定理,等边三角形的判定和性质,切线的性质,锐角三角函数,特殊角的三角函数值,扇形面积。【分析】六边形ABCDEF是正六边形,AOB=60。又OA0OB,OAB是等边三角形,OA=OB=AB=2。设点G为AB与O的切点,连接OG,则OGAB,OG=OAsin60=2。故选A。7. (2012湖北黄冈3分)如图,AB 为O 的直径,弦CDAB 于E,已知CD=12,则O 的直径为【 】A. 8 B. 10 C.16 D.20【答案】D【考点】垂径定理,勾股定理。【分析】连接OC,根据题意,CE=CD=6,BE=2在RtOEC中,设OC=x,则OE=x-2,(x-2)2+62=x2,解得:x=10。直径AB=20。故选D8. (2012湖北随州4分)如图,AB是O的直径,若BAC=350,则么ADC=【 】 A.350 B.550 C.700 D.1100【答案】B。【考点】圆周角定理,直角三角形两锐角的关系。【分析】AB是O的直径,ACB=90(直径所对的圆周角是直角)。BAC=35,B=90BAC=9035=55(直角三角形两锐角互余)B与ADC是所对的圆周角,ADC=B=55(同圆或等圆中,同弧或等弧所对的圆周角相等)。故选B。9. (2012湖北襄阳3分)ABC为O的内接三角形,若AOC=160,则ABC的度数是【 】A80 B160 C100 D80或100【答案】D。【考点】圆周角定理。1028458【分析】根据题意画出图形,由圆周角定理即可求得答案ABC的度数,又由圆的内接四边四边形性质,即可求得ABC的度数:如图,AOC=160,ABC=AOC=160=80。ABC+ABC=180,ABC=180ABC=18080=100。ABC的度数是:80或100。故选D。15 10. (2012湖北鄂州3分)如下图OA=OB=OC且ACB=30,则AOB的大小是【 】A.40B.50C.60D.70【答案】C。【考点】圆周角定理。【分析】OA=OB=OC,A、B、C在以O为圆心OA为半径的圆上。 作O。 ACB和AOB是同弧所对的圆周角和圆心角,且ACB=30, 根据同弧所对的圆周角是圆心角的一半的性质,得AOB=60。故选C。 二、填空题1. (2012湖北荆门3分) 如图,在直角坐标系中,四边形OABC是直角梯形,BCOA,P分别与OA、OC、BC相切于点E、D、B,与AB交于点F已知A(2,0),B(1,2),则tanFDE= 【答案】。【考点】切线的性质,锐角三角函数的定义,圆周角定理。 【分析】连接PB、PEP分别与OA、BC相切于点E、B,PBBC,PEOA。BCOA,B、P、E在一条直线上。A(2,0),B(1,2),AE=1,BE=2。EDF=ABE,tanFDE=。2. (2012湖北天门、仙桃、潜江、江汉油田3分)平面直角坐标系中,M的圆心坐标为(0,2),半径为1,点N在x轴的正半轴上,如果以点N为圆心,半径为4的N与M相切,则圆心N的坐标为 【答案】(,0)或(,0)。【考点】相切两圆的性质,坐标与图形性质,勾股定理。【分析】分别从M与N内切或外切去分析:M与N外切,MN=4+1=5,圆心N的坐标为(,0)。M与N内切,MN=41=3,圆心N的坐标为(,0)。综上所述,圆心N的坐标为(,0)或(,0)。3. (2012湖北咸宁3分)如图,量角器的直径与直角三角板ABC的斜边AB重合,其中量角器0刻度线的端点N与点A重合,射线CP从CA处出发沿顺时针方向以每秒2度的速度旋转,CP与量角器的半圆弧交于点E,第35秒时,点E在量角器上对应的读数是 度【答案】140。【考点】圆周角定理。【分析】连接OE,ACB=90,点C在以AB为直径的圆上,即点C在O上。EOA=2ECA。ECA=235=70,AOE=2ECA=270=140,即点E在量角器上对应的读数是140。4. (2012湖北孝感3分)把如图所示的长方体材料切割成一个体积最大的圆柱,则这个圆柱的体积是 (结果不取近似值)【答案】3000。【考点】圆柱的计算。【分析】底面是边长为20cm的正方形,其内切圆的半径为10cm。这个圆柱底面积为100cm2。这个圆柱体积为10030=3000(cm3)。5. (2012湖北襄阳3分)如图,从一个直径为4dm的圆形铁皮中剪出一个圆心角为60的扇形ABC,并将剪下来的扇形围成一个圆锥,则圆锥的底面半径为 dm【答案】1。【考点】圆锥的计算,垂径定理,锐角三角函数定义,特殊角的三角函数值,圆锥的侧面展开图弧长与圆锥的底面周长的关系。1028458【分析】如图,作ODAC于点D,连接OA, OAD=30,AC=2AD,AC=2OAcos30=6。根据圆锥的侧面展开图弧长等于圆锥的底面周长得,圆锥的底面圆的半径=2(2)=1。三、解答题1. (2012湖北武汉8分)在锐角ABC中,BC5,sinA(1)如图1,求ABC外接圆的直径;(2)如图2,点I为ABC的内心,BAB C,求AI的长。【答案】解:(1)作ABC的外接圆的直径CD,连接BD。 则CBD=900,D=A。 。 BC5,。 ABC外接圆的直径为。 (2)连接BI并延长交AC于点H,作IEAB于点E。 BA=BC,BHAC。IH=IE。 在RtABH中,BH=ABsinBDH=4,。 , ,即。 IH=IE,。 在RtAIH中,。【考点】三角形外心和内心的性质,圆周角定理,锐角三角函数定义,等腰三角形的性质,角平分线的判定和性质,勾股定理。 【分析】(1)作ABC的外接圆的直径CD,连接BD,由直径所对圆周角是直角的性质得CBD=900,由同圆中同弧所对圆周角相等得D=A,从而由已知,根据锐角三角函数定义即可求得ABC外接圆的直径。 (2)连接BI并延长交AC于点H,作IEAB于点E,由三角形内心的性质和角平分线的判定和性质,知IH=IE。在RtABH中,根据锐角三角函数定义和勾股定理可求出BH=4和AH=3,从而由求得。在RtAIH中,应用勾股定理求得AI的长。2. (2012湖北荆门10分)如图所示为圆柱形大型储油罐固定在U型槽上的横截面图已知图中ABCD为等腰梯形(ABDC),支点A与B相距8m,罐底最低点到地面CD距离为1m设油罐横截面圆心为O,半径为5m,D=56,求:U型槽的横截面(阴影部分)的面积(参考数据:sin530.8,tan561.5,3,结果保留整数)【答案】解:如图,连接AO、BO过点A作AEDC于点E,过点O作ONDC于点N,ON交O于点M,交AB于点F则OFABOA=OB=5m,AB=8m,AF=BF=AB=4(m),AOB=2AOF,在RtAOF中,AOF=53,AOB=106。(m),由题意得:MN=1m,FN=OMOF+MN=3(m)。四边形ABCD是等腰梯形,AEDC,FNAB,AE=FN=3m,DC=AB+2DE。在RtADE中,DE=2m,DC=12m。(m2)。答:U型槽的横截面积约为20m2。【考点】解直角三角形的应用,垂径定理,勾股定理,等腰梯形的性质,锐角三角函数定义。【分析】连接AO、BO过点A作AEDC于点E,过点O作ONDC于点N,ON交O于点M,交AB于点F,则OFAB。根据垂径定理求出AF,再在RtAOF中利用锐角三角函数的定义求出AOB,由勾股定理求出OF,根据四边形ABCD是等腰梯形求出AE的长,再由即可得出结果。3. (2012湖北天门、仙桃、潜江、江汉油田8分)如图,AB是O的直径,AC和BD是它的两条切线,CO平分ACD(1)求证:CD是O的切线;(2)若AC=2,BC=3,求AB的长【答案】(1)证明:过O点作OECD,垂足为E, AC是切线,OAAC。CO平分ACD,OECD,ACO=ECO,CAO=CEO,又OC=OC,ACOECO(AAS)。OA=OE。CD是O的切线。(2)解:过C点作CFBD,垂足为F,AC,CD,BD都是切线,AC=CE=2,BD=DE=3。CD=CE+DE=5。CAB=ABD=CFB=90,四边形ABFC是矩形。BF=AC=2,DF=BDBF=1。在RtCDF中,CF2=CD2DF2=5212=24,AB=CF=2。【考点】切线的判定与性质,全等三角形的判定和性质,矩形的判定和性质,勾股定理。【分析】(1)过O点作OECD于点E,通过角平分线的性质得出OE=OA即可证得结论。(2)过点D作DFBC于点F,根据切线的性质可得出DC的长度,从而在RtDFC中利用勾股定理可得出DF的长,可得出AB的长度。4. (2012湖北宜昌8分)如图,ABC和ABD都是O的内接三角形,圆心O在边AB上,边AD分别与BC,OC交于E,F两点,点C为的中点(1)求证:OFBD;(2)若,且O的半径R=6cm 求证:点F为线段OC的中点; 求图中阴影部分(弓形)的面积【答案】(1)证明:OC为半径,点C为的中点,OCAD。AB为直径,BDA=90,BDAD。OFBD。(2)证明:点O为AB的中点,点F为AD的中点,OF=BD。FCBD,FCE=DBE。FEC=DEB,ECFEBD,FC=BD。FC=FO,即点F为线段OC的中点。解:FC=FO,OCAD,AC=AO,又AO=CO,AOC为等边三角形。根据锐角三角函数定义,得AOC的高为。(cm2)。答:图中阴影部分(弓形)的面积为cm2。【考点】圆心角、弧、弦的关系,垂径定理,圆周角定理,相似三角形的判定和性质,三角形中位线的性质,等边三角形的判定和性质,扇形面积的计算。【分析】(1)由垂径定理可知OCAD,由圆周角定理可知BDAD,从而证明OFBD。 (2)由OFBD可证ECFEBD,利用相似比证明BD=2CF,再证OF为ABD的中位线,得出BD=2OF,即CF=OF,证明点F为线段OC的中点;根据S阴=S扇形AOCSAOC,求面积。5. (2012湖北恩施12分)如图,AB是O的弦,D为OA半径的中点,过D作CDOA交弦AB于点E,交O于点F,且CE=CB(1)求证:BC是O的切线;(2)连接AF,BF,求ABF的度数;(3)如果CD=15,BE=10,sinA=,求O的半径【答案】解:(1)证明:连接OB,OB=OA,CE=CB,A=OBA,CEB=ABC。又CDOA,A+AED=A+CEB=90。OBA+ABC=90。OBBC。BC是O的切线。(2)连接OF,AF,BF,DA=DO,CDOA,OAF是等边三角形。AOF=60。ABF=AOF=30。(3)过点C作CGBE于点G,由CE=CB,EG=BE=5。易证RtADERtCGE,sinECG=sinA=,。又CD=15,CE=13,DE=2,由RtADERtCGE得,即,解得。O的半径为2AD=。【考点】等腰(边)三角形的性质,直角三角形两锐角的关系,切线的判定,圆周角定理,勾股定理,相似三角形的判定和性质,锐角三角函数定义。【分析】(1)连接OB,有圆的半径相等和已知条件证明OBC=90即可证明BC是O的切线。(2)连接OF,AF,BF,首先证明OAF是等边三角形,再利用圆周角定理:同弧所对的圆周角是所对圆心角的一半即可求出ABF的度数。(3)过点C作CGBE于点G,由CE=CB,可求出EG=BE=5,由RtADERtCGE和勾股定理求出DE=2,由RtADERtCGE求出AD的长,从而求出O的半径。6. (2012湖北咸宁9分)如图,AB是O的直径,点E是AB上的一点,CD是过E点的弦,过点B的切线交AC的延长线于点F,BFCD,连接BC(1)已知AB=18,BC=6,求弦CD的长;(2)连接BD,如果四边形BDCF为平行四边形,则点E位于AB的什么位置?试说明理由【答案】解:(1)BF与O相切,BFAB。又BFCD,CDAB。又AB是直径,CE=ED。连接CO,设OE=x,则BE=9x。由勾股定理得:,即,解得。(2)四边形BDCF为平行四边形,BF=CD。而,。BFCD, AECABF。点E是AB的中点。【考点】切线的性质,垂径定理,勾股定理,平行四边形的性质。相似三角形的判定和性质。【分析】(1)由BF与O相切,根据切线的性质,可得BFAB,又由BFCD,易得CDAB,由垂径定理即可求得CE=DE,然后连接CO,设OE=x,则BE=9-x,由勾股定理即可求得OE的长,从而求得CD的长。(2)由四边形BDCF为平行四边形,根据平行四边形的性质,即可CD=BF,又由AECABF,即可求得点E是AB的中点。7. (2012湖北荆州9分)如图所示为圆柱形大型储油罐固定在U型槽上的横截面图已知图中ABCD为等腰梯形(ABDC),支点A与B相距8m,罐底最低点到地面CD距离为1m设油罐横截面圆心为O,半径为5m,D=56,求:U型槽的横截面(阴影部分)的面积(参考数据:sin530.8,tan561.5,3,结果保留整数)【答案】解:如图,连接AO、BO过点A作AEDC于点E,过点O作ONDC于点N,ON交O于点M,交AB于点F则OFABOA=OB=5m,AB=8m,AF=BF=AB=4(m),AOB=2AOF,在RtAOF中,AOF=53,AOB=106。(m),由题意得:MN=1m,FN=OMOF+MN=3(m)。四边形ABCD是等腰梯形,AEDC,FNAB,AE=FN=3m,DC=AB+2DE。在RtADE中,DE=2m,DC=12m。(m2)。答:U型槽的横截面积约为20m2。【考点】解直角三角形的应用,垂径定理,勾股定理,等腰梯形的性质,锐角三角函数定义。【分析】连接AO、BO过点A作AEDC于点E,过点O作ONDC于点N,ON交O于点M,交AB于点F,则OFAB。根据垂径定理求出AF,再在RtAOF中利用锐角三角函数的定义求出AOB,由勾股定理求出OF,根据四边形ABCD是等腰梯形求出AE的长,再由即可得出结果。8. (2012湖北荆州12分)如图甲,四边形OABC的边OA、OC分别在x轴、y轴的正半轴上,顶点在B点的抛物线交x轴于点A、D,交y轴于点E,连接AB、AE、BE已知tanCBE=,A(3,0),D(1,0),E(0,3)(1)求抛物线的解析式及顶点B的坐标;(2)求证:CB是ABE外接圆的切线;(3)试探究坐标轴上是否存在一点P,使以D、E、P为顶点的三角形与ABE相似,若存在,直接写出点P的坐标;若不存在,请说明理由;(4)设AOE沿x轴正方向平移t个单位长度(0t3)时,AOE与ABE重叠部分的面积为s,求s与t之间的函数关系式,并指出t的取值范围【答案】解:(1)抛物线经过点A(3,0),D(1,0),设抛物线解析式为y=a(x3)(x+1)。将E(0,3)代入上式,解得:a=1。抛物线的解析式为y=(x3)(x+1),即y=x2+2x+3。又y=x2+2x+3=(x1)2+4,点B(1,4)。(2)证明:如图1,过点B作BMy于点M,则M(0,4)在RtAOE中,OA=OE=3,1=2=45,。在RtEMB中,EM=OMOE=1=BM,MEB=MBE=45,。BEA=1801MEB=90。AB是ABE外接圆的直径。在RtABE中,BAE=CBE。在RtABE中,BAE+3=90,CBE+3=90。CBA=90,即CBAB。CB是ABE外接圆的切线。(3)存在。点P的坐标为(0,0)或(9,0)或(0,)。(4)设直线AB的解析式为y=kx+b将A(3,0),B(1,4)代入,得,解得。直线AB的解析式为y=2x+6。过点E作射线EFx轴交AB于点F,当y=3时,得x=,F(,3)。情况一:如图2,当0t时,设AOE平移到DNM的位置,MD交AB于点H,MN交AE于点G。则ON=AD=t,过点H作LKx轴于点K,交EF于点L由AHDFHM,得,即,解得HK=2t。=33(3t)2t2t=t2+3t。情况二:如图3,当t3时,设AOE平移到PQR的位置,PQ交AB于点I,交AE于点V。由IQAIPF,得即,解得IQ=2(3t)。=(3t)2(3t)(3t)2=(3t)2=t23t+。综上所述:。【考点】二次函数综合题,待定系数法,曲线上点的坐标与方程的关系,二次函数性质,等腰直角三角形的判定和性质,勾股定理,锐角三角函数定义,圆的切线的判定,相似三角形的性质,平移的性质。【分析】(1)已知A、D、E三点的坐标,利用待定系数法可确定抛物线的解析式,从而能得到顶点B的坐标。 (2)过B作BMy轴于M,由A、B、E三点坐标,可判断出BME、AOE都为等腰直角三角形,易证得BEA=90,即ABE是直角三角形,而AB是ABE外接圆的直径,因此只需证明AB与CB垂直即可BE、AE长易得,能求出tanBAE的值,结合tanCBE的值,可得到CBE=BAE,由此证得CBA=CBE+ABE=BAE+ABE=90,从而得证。(3)在RtABE中,AEB=90,tanBAE=,sinBAE=,cosBAE=。若以D、E、P为顶点的三角形与ABE相似,则DEP必为直角三角形。DE为斜边时,P1在x轴上,此时P1与O重合。由D(1,0)、E(0,3),得OD=1、OE=3, 即tanDEO=tanBAE,即DEO=BAE,满足DEOBAE的条件。因此 O点是符合条件的P1点,坐标为(0,0)。DE为短直角边时,P2在x轴上。若以D、E、P为顶点的三角形与ABE相似DEP2=AEB=90sinDP2E=sinBAE=。而DE=,则DP2=DEsinDP2E=10,OP2=DP2OD=9。即P2(9,0)。DE为长直角边时,点P3在y轴上。若以D、E、P为顶点的三角形与ABE相似,则EDP3=AEB=90cosDEP3=cosBAE=。则EP3=DEcosDEP3=,OP3=EP3OE=。即P3(0,)。综上所述,得:P1(0,0),P2(9,0),P3(0,)。 (4)过E作EFx轴交AB于F,当E点运动在EF之间时,AOE与ABE重叠部分是个五边形;当E点运动到F点右侧时,AOE与ABE重叠部分是个三角形按上述两种情况按图形之间的和差关系进行求解。9. (2012湖北黄冈8分)如图,在ABC 中,BA=BC,以AB 为直径作半圆O,交AC 于点D.连结DB,过点D 作DEBC,垂足为点E.(1)求证:DE 为O 的切线;(2)求证:DB2=ABBE.【答案】证明:(1)连接OD、BD,则ADB=90(圆周角定理),BA=BC,CD=AD(三线合一)。又AO=BO,OD是ABC的中位线。ODBC。DEB=90,ODE=90,即ODDE。DE为O的切线。(2)BED=BDC =900,EBD=DBC,BEDBDC,。又AB=BC,。BD2=ABBE。【考点】切线的判定和性质,圆周角定理,等腰三角形的性质,三角形中位线的性质,相似三角形的判定和性质。【分析】(1)连接OD、BD,根据圆周角定理可得ADB=90,从而得出点D是AC中点,判断出OD是ABC的中位线,利用中位线的性质得出ODE=90,这样可判断出结论。(2)根据题意可判断BEDBDC,从而可得BD2=BCBE,将BC替换成AB即可得出结论。10. (2012湖北十堰10分)如图1,O是ABC的外接圆,AB是直径,ODAC,且CBD=BAC,OD交O于点E(1)求证:BD是O的切线;(2)若点E为线段OD的中点,证明:以O、A、C、E为顶点的四边形是菱形;(3)作CFAB于点F,连接AD交CF于点G(如图2),求的值【考点】圆的综合题,圆周角定理,直角三角形两锐角的关系,切线的判定,直角三角形斜边上的中线性质,等边三角形的判定和性质,平行的判定和性质,菱形的判定,相似三角形的判定和性质。【分析】(1)由AB是O的直径,根据直径所对的圆周角为直角得到BCA=90,则ABC+BAC=90,而CBD=BA,得到ABC+CBD=90,即OBBD,根据切线的判定定理即可得到BD为O的切线。(2)连接CE、OC,BE,根据直角三角形斜边上的中线等于斜边的一半得到BE=OE=ED,则OBE为等边三角形,于是BOE=60,又因为ACOD,则OAC=60,AC=OA=OE,即有ACOE且AC=OE,可得到四边形OACE是平行四边形,加上OA=OE,即可得到四边形OACE是菱形。(3)由CFAB得到AFC=OBD=90,而ODAC,则CAF=DOB,根据相似三角形的判定易得RtAFCRtOBD,则有,即,再由FGBD易证得AFGABD,则,即,然后求FG与FC的比即可。11. (2012湖北孝感10分))如图,AB是O的直径,AM、BN分别与O相切于点A、B,CD交AM、BN于点D、C,DO平分ADC(1)求证:CD是O的切线;(2)若AD4,BC9,求O的半径R【答案】解:(1)证明:过O点作OECD于点E,AM切O于点A,OAAD。又DO平分ADC,OE=OA。OA为O的半径,OE为O的半径。CD是O的切线。(2)过点D作DFBC于点F,AM,BN分别切O于点A,B,ABAD,ABBC。四边形ABFD是矩形。AD=BF,AB=DF。又AD=4,BC=9,FC=94=5。AM,BN,DC分别切O于点A,B,E,DA=DE,CB=CE。DC=AD+BC=4+9=13。在RtDFC中,DC2=DF2FC2,。AB=12。O的半径R是6。【考点】切线的判定和性质,角平分线的性质,勾股定理,矩形的判定和性质。【分析】(1)过O点作OECD于点E,通过角平分线的性质得出OE=OA即可证得结论。(2)过点D作DFBC于点F,根据切线的性质可得出DC的长度,继而在RtDFC中利用勾股定理可得出DF的长,从而可得出半径。12. (2012湖北襄阳10分)如图,PB为O的切线,B为切点,直线PO交于点E、F,过点B作PO的垂线BA,垂足为点D,交O于点A,延长AO与O交于点C,连接BC,AF(1)求证:直线PA为O的切线;(2)试探究线段EF、OD、OP之间的等量关系,并加以证明;(3)若BC=6,tanF=,求cosACB的值和线段PE的长【答案】解:(1)连接OB,PB是O的切线,PBO=90。OA=OB,BAPO于D,AD=BD,POA=POB。又PO=PO,PAOPBO(SAS)。PAO=PBO=90。直线PA为O的切线。(2)EF2=4ODO
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 应急安全培训公司课件
- 应急与安全管理培训内容课件
- 2025年自考专业(会计)模拟试题附答案详解【轻巧夺冠】
- 买菜合同(标准版)
- 2023年度冶金工业技能鉴定每日一练试卷(培优)附答案详解
- 2024年2月湖南省直机关遴选公务员面试真题带答案详解
- 2025年绿色建筑材料市场推广策略与政策支持下的绿色建筑市场需求预测报告
- 2025年工业互联网平台量子通信技术与数字版权保护的应用预研报告
- 2025年工业互联网平台AR交互技术在人工智能与物联网融合中的应用报告
- 2025年绿色建筑认证体系在绿色建筑绿色建筑社区经济中的应用与发展报告
- 《工会固定资产管理办法》中华全国总工会办公厅印发
- 新生儿耳聋基因筛查与遗传咨询
- 智慧健康养老服务与管理人才培养方案
- GB/T 8923.1-2011涂覆涂料前钢材表面处理表面清洁度的目视评定第1部分:未涂覆过的钢材表面和全面清除原有涂层后的钢材表面的锈蚀等级和处理等级
- TSZUAVIA 009.9-2019 多旋翼无人机系统实验室环境试验方法 第9部分:冲击试验
- ECPR临床应用与进展课件
- 《装配式综合管廊施工及验收标准》
- 罗湖区-空气质量状况及原因分析
- 玉米病害图谱 症状课件
- 2013版电力建设工程概预算定额宣贯讲义
- 伤逝-课件完整版
评论
0/150
提交评论