




已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
基本不等式专题辅导一、知识点总结1、基本不等式原始形式(1)若,则 (2)若,则2、基本不等式一般形式(均值不等式)若,则3、基本不等式的两个重要变形(1)若,则(2)若,则总结:当两个正数的积为定植时,它们的和有最小值; 当两个正数的和为定植时,它们的积有最小值;特别说明:以上不等式中,当且仅当时取“=”4、求最值的条件:“一正,二定,三相等”5、常用结论(1)若,则 (当且仅当时取“=”)(2)若,则 (当且仅当时取“=”)(3)若,则 (当且仅当时取“=”)(4)若,则(5)若,则特别说明:以上不等式中,当且仅当时取“=”6、柯西不等式 (1)若,则(2)若,则有:(3)设是两组实数,则有二、题型分析题型一:利用基本不等式证明不等式1、设均为正数,证明不等式:2、已知为两两不相等的实数,求证:3、已知,求证:4、 已知,且,求证:5、 已知,且,求证:6、(2013年新课标卷数学(理)选修45:不等式选讲设均为正数,且,证明:(); ().7、(2013年江苏卷(数学)选修45:不等式选讲已知,求证:题型二:利用不等式求函数值域1、求下列函数的值域(1) (2)(3) (4)题型三:利用不等式求最值 (一)(凑项) 1、已知,求函数的最小值;变式1:已知,求函数的最小值;变式2:已知,求函数的最大值;练习:1、已知,求函数的最小值; 2、已知,求函数的最大值;题型四:利用不等式求最值 (二)(凑系数)1、当时,求的最大值;变式1:当时,求的最大值;变式2:设,求函数的最大值。2、若,求的最大值;变式:若,求的最大值;3、求函数的最大值; (提示:平方,利用基本不等式)变式:求函数的最大值;题型五:巧用“1”的代换求最值问题1、已知,求的最小值;法一:法二:变式1:已知,求的最小值;变式2:已知,求的最小值;变式3:已知,且,求的最小值。变式4:已知,且,求的最小值;变式5:(1)若且,求的最小值;(2)若且,求的最小值;变式6:已知正项等比数列满足:,若存在两项,使得,求的最小值;题型六:分离换元法求最值(了解)1、求函数的值域;变式:求函数的值域;2、求函数的最大值;(提示:换元法)变式:求函数的最大值;题型七:基本不等式的综合应用1、已知,求的最小值2、(2009天津)已知,求的最小值;变式1:(2010四川)如果,求关于的表达式的最小值;变式2:(2012湖北武汉诊断)已知,当时,函数的图像恒过定点,若点在直线上,求的最小值;3、已知,求最小值;变式1:已知,满足,求范围;变式2:(2010山东)已知,求最大值;(提示:通分或三角换元)变式3:(2011浙江)已知,求最大值;4、(2013年山东(理)设正实数满足,则当取得最大值时,的最大值为( )()A B C D(提示:代入换元,利用基本不等式以及函数求最值)变式:设是正数,满足,求的最小值;题型八:利用基本不等式求参数范围1、(2012沈阳检测)已知,且恒成立,求正实数的最小值;2、已知且恒成立,如果,求的最大值;(参考:4)(提示:分离参数,换元法)变式:已知满则,若恒成立,求的取值范围;题型九:利用柯西不等式求最值1、二维柯西不等式 若,则2、二维形式的柯西不等式的变式3、二维形式的柯西不等式的向量形式4、三维柯西不等式若,则有:5、一般维柯西不等式设是两组实数,则有:题型分析题型一:利用柯西不等式一般形式求最值1、设,若,则的最小值为时, 析: 最小值为此时 ,2、设,求的最小值,并求此时之值。:3、设,求之最小值为 ,此时 (析:)4、(2013年湖南卷(理)已知则的最小值是 ()5、(2013年湖北卷(理)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 前台员工的工作总结15篇
- 2025杭州市临安区部分医疗卫生事业单位招聘35人模拟试卷及完整答案详解
- 2025年河北唐山滦南县专项选聘教师11名模拟试卷及答案详解参考
- 2025年蒲江县公开招聘事业单位工作人员(14人)模拟试卷及1套完整答案详解
- 2025年上半年齐齐哈尔医学院附属第二医院公开招聘编制外工作人员17人模拟试卷及完整答案详解一套
- 2025年上海中医药大学附属曙光医院淮南医院招聘27人模拟试卷含答案详解
- 2025年航空制造和材料专用设备合作协议书
- 2025江西赣州经济技术开发区退役军人服务中心招聘见习生1人考前自测高频考点模拟试题及完整答案详解1套
- 2025广东中共中山市委政法委员会所属事业单位招聘事业单位人员4人考前自测高频考点模拟试题及答案详解(各地真题)
- 2025河北保定市定兴县国有公司领导人员招聘2人模拟试卷及答案详解(考点梳理)
- 2024年北控水务集团招聘笔试真题
- 2025年盘锦市总工会面向社会公开招聘工会社会工作者52人考试参考试题及答案解析
- 2025河北水发节水有限公司公开招聘工作人员16人笔试参考题库附答案解析
- 2025年秋人教版数学四年级上学期第一次月考测试卷【附答案】
- 新版中华民族共同体概论课件第十二讲民族危亡与中华民族意识觉醒(1840-1919)-2025年版
- 夜间红外成像算法优化-洞察及研究
- 2025年全国高校辅导员素质能力大赛基础知识测试卷及答案(共五套)
- 酒类酿造产品品质追溯体系建设方案
- 电焊车间卫生管理办法
- 书店服务礼仪培训课件
- 压缩空气储能系统中离心压缩机的变工况特性与调节规律深度剖析
评论
0/150
提交评论