




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
函数的最大值与最小值 高三数学选修 第三章导数与微分 函数的最大值与最小值 o x y y f x a b x1 x2 x3 极小值f x1 极小值f x3 最大值f b 最小值f x3 极大值f x2 1 函数最值的概念 定义 可导函数在闭区间 a b 上所有点处的函数值中最大 或最小 值 叫做函数的最大 或最小 值 一般地 在闭区间上连续的函数在 a b 上必有最大值与最小值 若改为 a b 函数在 0 内连续 举例说明 反思 1 最值不一定存在 如果最值存在 那么最值惟一 2 区间 a b 上单调增 或减 函数的最值在两端点处取到 3 求函数的值域问题就是求最值问题 函数的最大值与最小值 o x y y f x a b x1 x2 x3 最大值f b 最小值f x3 一般地 函数的最大最小值 都是在函数的极值点或区间端点上取到的 当x变化时 y的变化情况如下表 例1 求函数在区间 2 2 上的最大值与最小值 2 求可导函数在 a b 上最值的方法 解 令 有 解得 从上表可看出 最大值是13 最小值是4 解题回顾 设函数f x 在 a b 上连续 在 a b 内 可导 求f x 在 a b 上的最大值与最小值的步骤 1 求f x 在 a b 内的极值 2 将f x 的各极值与f a f b 比较 其中最大的 一个是最大值 最小的一个是最小值 例1 求函数在区间 2 2 上的最大值与最小值 2 求可导函数在 a b 上最值的方法 对应练习 求下列函数在所给的区间上的最大值与最小值 1 y x x3x 0 2 2 y x3 x2 xx 2 1 解题回顾 在求函数f x 在 a b 最值过程中 判断极值比较麻烦 可改求可导函数在 a b 内导数为0点函数值 再把这些值与函数在端点的值比较即可 例2 在边长为60cm的正方形铁皮的四角切去相等的正方形 再把它的边沿虚线折起如下图 做成一个无盖的方底箱子 箱底边长为多少时 箱子容积最大 最大容积是多少 解题回顾 1 求最大 小 值应用问题的一般方法 分析 联系 抽象 转化 数学方法 数学结果 实际结果 回答问题 实际问题 建立数学模型 列数学关系式 关键 读题 懂题 建立数学关系式 2 在实际问题中 有时会遇到在区间内只有一个点使导数为0的情形 如果函数在这点有极大 小 值 那么不与端点的值比较 也可以知道这就是最大 小 值 这时所说的也适用于开区间或无穷区间 对应练习 圆柱形金属饮料罐的容积一定时 它的高与底面半径应样选取时 才能使所用的材料最省 解 设圆柱的高为h 底半径为r 则表面积s 2 rh 2 r2由v r2h 得h 则s r 2 r 2 r2 2 r2令s r 4 r 0解得 r 从而h 2即h 2r因为只有一个极值 所以它是最小值 答 当罐的高与底直径相等时 所用材料最省 反馈练习 1 函数在 3 4 上的最小值为 a 64b 51c 56d 612 函数在上的最大值为 a 2 2b 4c d 53 函数在时的最大 最小值分别是 d b 课堂小结 1 利用导数求函数最值的关键是可导函数极值的判定 2 若连续函数在闭区间上只有一个导数为0的点 且在这一点有极值 则该极值就是函数在上的最值
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年工业互联网平台入侵检测系统高效数据传输优化报告
- 2025年多式联运信息平台在物流仓储中的应用优化与行业协同发展分析
- 2025年网络文学IP衍生品市场分析报告:文化价值与娱乐产业的协同发展
- 2025年婴幼儿配方食品营养配方优化对婴幼儿感官体验影响报告
- 2025年肿瘤精准医疗临床实践中的个体化治疗计划制定报告
- 现代铁路政策与法规课件
- 2025年一级建造师考试建筑工程管理专项试题及答案
- 2025年教师资格证考试(中学)教育知识与能力专项训练押题试卷版
- 2025年高考数学真题解析与专项训练解题思路全解析
- 新中国以来中国民俗的变迁
- 《贵州省情》课程教学大纲
- 小学教育教学工作计划范文(5篇)
- 汽轮机汽封系统
- 《大随求陀罗尼》罗马拼音与汉字对照版
- 中国人健康大数据2023年
- 复变函数与积分变换教案
- 职工医疗互助保障计划、女职工安康互助保障计划互助金申请表
- 宾馆饭店消防安全排查整治标准
- GB 16869-2005鲜、冻禽产品
- 材料科学基础(全套429张课件)
- 整机部整机出货检验重点标准
评论
0/150
提交评论